Question
Solve the inequality
x∈(−∞,−0.854262)∪(−0.075539,0.929801)
Evaluate
8x>−53−(−10x3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8x>−53+10x3
Move the expression to the left side
8x−(−53+10x3)>0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8x+53−10x3>0
Rewrite the expression
8x+53−10x3=0
Factor the expression
51(40x+3−50x3)=0
Divide both sides
40x+3−50x3=0
Calculate
x≈0.929801x≈−0.854262x≈−0.075539
Determine the test intervals using the critical values
x<−0.854262−0.854262<x<−0.075539−0.075539<x<0.929801x>0.929801
Choose a value form each interval
x1=−2x2≈−0.464901x3=0x4=2
To determine if x<−0.854262 is the solution to the inequality,test if the chosen value x=−2 satisfies the initial inequality
More Steps

Evaluate
8(−2)>−53+10(−2)3
Multiply the numbers
More Steps

Evaluate
8(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−8×2
Multiply the numbers
−16
−16>−53+10(−2)3
Simplify
More Steps

Evaluate
−53+10(−2)3
Multiply the terms
−53−80
Reduce fractions to a common denominator
−53−580×5
Write all numerators above the common denominator
5−3−80×5
Multiply the numbers
5−3−400
Subtract the numbers
5−403
Use b−a=−ba=−ba to rewrite the fraction
−5403
−16>−5403
Calculate
−16>−80.6
Check the inequality
true
x<−0.854262 is the solutionx2≈−0.464901x3=0x4=2
To determine if −0.854262<x<−0.075539 is the solution to the inequality,test if the chosen value x≈−0.464901 satisfies the initial inequality
More Steps

Evaluate
8(−0.464901)>−53+10(−0.464901)3
Multiply the numbers
−3.719204>−53+10(−0.464901)3
Simplify
More Steps

Evaluate
−53+10(−0.464901)3
Multiply the terms
−53−1.004801
Rewrite the expression
−0.6−1.004801
Subtract the numbers
−1.604801
−3.719204>−1.604801
Check the inequality
false
x<−0.854262 is the solution−0.854262<x<−0.075539 is not a solutionx3=0x4=2
To determine if −0.075539<x<0.929801 is the solution to the inequality,test if the chosen value x=0 satisfies the initial inequality
More Steps

Evaluate
8×0>−53+10×03
Any expression multiplied by 0 equals 0
0>−53+10×03
Simplify
More Steps

Evaluate
−53+10×03
Calculate
−53+10×0
Any expression multiplied by 0 equals 0
−53+0
Removing 0 doesn't change the value,so remove it from the expression
−53
0>−53
Calculate
0>−0.6
Check the inequality
true
x<−0.854262 is the solution−0.854262<x<−0.075539 is not a solution−0.075539<x<0.929801 is the solutionx4=2
To determine if x>0.929801 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
8×2>−53+10×23
Multiply the numbers
16>−53+10×23
Simplify
More Steps

Evaluate
−53+10×23
Multiply the terms
−53+80
Reduce fractions to a common denominator
−53+580×5
Write all numerators above the common denominator
5−3+80×5
Multiply the numbers
5−3+400
Add the numbers
5397
16>5397
Calculate
16>79.4
Check the inequality
false
x<−0.854262 is the solution−0.854262<x<−0.075539 is not a solution−0.075539<x<0.929801 is the solutionx>0.929801 is not a solution
Solution
x∈(−∞,−0.854262)∪(−0.075539,0.929801)
Show Solution
