Question
Factor the expression
2(2x−5)(2x+5)
Evaluate
8x2−50
Factor out 2 from the expression
2(4x2−25)
Solution
More Steps

Evaluate
4x2−25
Rewrite the expression in exponential form
(2x)2−52
Use a2−b2=(a−b)(a+b) to factor the expression
(2x−5)(2x+5)
2(2x−5)(2x+5)
Show Solution

Find the roots
x1=−25,x2=25
Alternative Form
x1=−2.5,x2=2.5
Evaluate
8x2−50
To find the roots of the expression,set the expression equal to 0
8x2−50=0
Move the constant to the right-hand side and change its sign
8x2=0+50
Removing 0 doesn't change the value,so remove it from the expression
8x2=50
Divide both sides
88x2=850
Divide the numbers
x2=850
Cancel out the common factor 2
x2=425
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±425
Simplify the expression
More Steps

Evaluate
425
To take a root of a fraction,take the root of the numerator and denominator separately
425
Simplify the radical expression
More Steps

Evaluate
25
Write the number in exponential form with the base of 5
52
Reduce the index of the radical and exponent with 2
5
45
Simplify the radical expression
More Steps

Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
25
x=±25
Separate the equation into 2 possible cases
x=25x=−25
Solution
x1=−25,x2=25
Alternative Form
x1=−2.5,x2=2.5
Show Solution
