Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
9(2x−4)=6x2
Swap the sides
6x2=9(2x−4)
Expand the expression
More Steps

Evaluate
9(2x−4)
Apply the distributive property
9×2x−9×4
Multiply the numbers
18x−9×4
Multiply the numbers
18x−36
6x2=18x−36
Move the expression to the left side
6x2−18x+36=0
Substitute a=6,b=−18 and c=36 into the quadratic formula x=2a−b±b2−4ac
x=2×618±(−18)2−4×6×36
Simplify the expression
x=1218±(−18)2−4×6×36
Simplify the expression
More Steps

Evaluate
(−18)2−4×6×36
Multiply the terms
More Steps

Multiply the terms
4×6×36
Multiply the terms
24×36
Multiply the numbers
864
(−18)2−864
Rewrite the expression
182−864
Evaluate the power
324−864
Subtract the numbers
−540
x=1218±−540
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=23−215i,x2=23+215i
Alternative Form
x1≈1.5−1.936492i,x2≈1.5+1.936492i
Evaluate
9(2x−4)=6x2
Swap the sides
6x2=9(2x−4)
Expand the expression
More Steps

Evaluate
9(2x−4)
Apply the distributive property
9×2x−9×4
Multiply the numbers
18x−9×4
Multiply the numbers
18x−36
6x2=18x−36
Move the expression to the left side
6x2−18x+36=0
Substitute a=6,b=−18 and c=36 into the quadratic formula x=2a−b±b2−4ac
x=2×618±(−18)2−4×6×36
Simplify the expression
x=1218±(−18)2−4×6×36
Simplify the expression
More Steps

Evaluate
(−18)2−4×6×36
Multiply the terms
More Steps

Multiply the terms
4×6×36
Multiply the terms
24×36
Multiply the numbers
864
(−18)2−864
Rewrite the expression
182−864
Evaluate the power
324−864
Subtract the numbers
−540
x=1218±−540
Simplify the radical expression
More Steps

Evaluate
−540
Evaluate the power
540×−1
Evaluate the power
540×i
Evaluate the power
More Steps

Evaluate
540
Write the expression as a product where the root of one of the factors can be evaluated
36×15
Write the number in exponential form with the base of 6
62×15
The root of a product is equal to the product of the roots of each factor
62×15
Reduce the index of the radical and exponent with 2
615
615×i
x=1218±615×i
Separate the equation into 2 possible cases
x=1218+615×ix=1218−615×i
Simplify the expression
More Steps

Evaluate
x=1218+615×i
Divide the terms
More Steps

Evaluate
1218+615×i
Rewrite the expression
126(3+15×i)
Cancel out the common factor 6
23+15×i
Simplify
23+215i
x=23+215i
x=23+215ix=1218−615×i
Simplify the expression
More Steps

Evaluate
x=1218−615×i
Divide the terms
More Steps

Evaluate
1218−615×i
Rewrite the expression
126(3−15×i)
Cancel out the common factor 6
23−15×i
Simplify
23−215i
x=23−215i
x=23+215ix=23−215i
Solution
x1=23−215i,x2=23+215i
Alternative Form
x1≈1.5−1.936492i,x2≈1.5+1.936492i
Show Solution
