Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
b1=33−61,b2=33+61
Alternative Form
b1≈−1.603417,b2≈3.603417
Evaluate
9(b−2)b=52
Multiply the terms
9b(b−2)=52
Expand the expression
More Steps

Evaluate
9b(b−2)
Apply the distributive property
9b×b−9b×2
Multiply the terms
9b2−9b×2
Multiply the numbers
9b2−18b
9b2−18b=52
Move the expression to the left side
9b2−18b−52=0
Substitute a=9,b=−18 and c=−52 into the quadratic formula b=2a−b±b2−4ac
b=2×918±(−18)2−4×9(−52)
Simplify the expression
b=1818±(−18)2−4×9(−52)
Simplify the expression
More Steps

Evaluate
(−18)2−4×9(−52)
Multiply
More Steps

Multiply the terms
4×9(−52)
Rewrite the expression
−4×9×52
Multiply the terms
−1872
(−18)2−(−1872)
Rewrite the expression
182−(−1872)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
182+1872
Evaluate the power
324+1872
Add the numbers
2196
b=1818±2196
Simplify the radical expression
More Steps

Evaluate
2196
Write the expression as a product where the root of one of the factors can be evaluated
36×61
Write the number in exponential form with the base of 6
62×61
The root of a product is equal to the product of the roots of each factor
62×61
Reduce the index of the radical and exponent with 2
661
b=1818±661
Separate the equation into 2 possible cases
b=1818+661b=1818−661
Simplify the expression
More Steps

Evaluate
b=1818+661
Divide the terms
More Steps

Evaluate
1818+661
Rewrite the expression
186(3+61)
Cancel out the common factor 6
33+61
b=33+61
b=33+61b=1818−661
Simplify the expression
More Steps

Evaluate
b=1818−661
Divide the terms
More Steps

Evaluate
1818−661
Rewrite the expression
186(3−61)
Cancel out the common factor 6
33−61
b=33−61
b=33+61b=33−61
Solution
b1=33−61,b2=33+61
Alternative Form
b1≈−1.603417,b2≈3.603417
Show Solution
