Question
Simplify the expression
144x1152x−1
Evaluate
9−1−1÷(8x×18)
Multiply the terms
9−1−1÷144x
Rewrite the expression
9−1−144x1
Subtract the numbers
8−144x1
Reduce fractions to a common denominator
144x8×144x−144x1
Write all numerators above the common denominator
144x8×144x−1
Solution
144x1152x−1
Show Solution

Find the excluded values
x=0
Evaluate
9−1−1÷(8x×18)
To find the excluded values,set the denominators equal to 0
8x×18=0
Multiply the terms
144x=0
Solution
x=0
Show Solution

Find the roots
x=11521
Alternative Form
x≈0.000868
Evaluate
9−1−1÷(8x×18)
To find the roots of the expression,set the expression equal to 0
9−1−1÷(8x×18)=0
Find the domain
More Steps

Evaluate
8x×18=0
Multiply the terms
144x=0
Rewrite the expression
x=0
9−1−1÷(8x×18)=0,x=0
Calculate
9−1−1÷(8x×18)=0
Multiply the terms
9−1−1÷144x=0
Rewrite the expression
9−1−144x1=0
Subtract the numbers
8−144x1=0
Subtract the terms
More Steps

Simplify
8−144x1
Reduce fractions to a common denominator
144x8×144x−144x1
Write all numerators above the common denominator
144x8×144x−1
Multiply the terms
144x1152x−1
144x1152x−1=0
Cross multiply
1152x−1=144x×0
Simplify the equation
1152x−1=0
Move the constant to the right side
1152x=0+1
Removing 0 doesn't change the value,so remove it from the expression
1152x=1
Divide both sides
11521152x=11521
Divide the numbers
x=11521
Check if the solution is in the defined range
x=11521,x=0
Solution
x=11521
Alternative Form
x≈0.000868
Show Solution
