Question
Simplify the expression
9−6a3+12a4
Evaluate
9−2a3×3(1−2a)
Multiply the terms
9−6a3(1−2a)
Solution
More Steps

Evaluate
−6a3(1−2a)
Apply the distributive property
−6a3×1−(−6a3×2a)
Any expression multiplied by 1 remains the same
−6a3−(−6a3×2a)
Multiply the terms
More Steps

Evaluate
−6a3×2a
Multiply the numbers
−12a3×a
Multiply the terms
−12a4
−6a3−(−12a4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6a3+12a4
9−6a3+12a4
Show Solution

Factor the expression
3(3−2a3+4a4)
Evaluate
9−2a3×3(1−2a)
Multiply the terms
9−6a3(1−2a)
Simplify
More Steps

Evaluate
−6a3(1−2a)
Apply the distributive property
−6a3×1−6a3(−2a)
Any expression multiplied by 1 remains the same
−6a3−6a3(−2a)
Multiply the terms
More Steps

Evaluate
−6a3(−2a)
Multiply the numbers
12a3×a
Multiply the terms
12a4
−6a3+12a4
9−6a3+12a4
Solution
3(3−2a3+4a4)
Show Solution

Find the roots
a∈/R
Evaluate
9−2(a3)×3(1−2a)
To find the roots of the expression,set the expression equal to 0
9−2(a3)×3(1−2a)=0
Calculate
9−2a3×3(1−2a)=0
Multiply the terms
9−6a3(1−2a)=0
Calculate
More Steps

Evaluate
−6a3(1−2a)
Apply the distributive property
−6a3×1−(−6a3×2a)
Any expression multiplied by 1 remains the same
−6a3−(−6a3×2a)
Multiply the terms
More Steps

Evaluate
−6a3×2a
Multiply the numbers
−12a3×a
Multiply the terms
−12a4
−6a3−(−12a4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6a3+12a4
9−6a3+12a4=0
Factor the expression
3(3−2a3+4a4)=0
Divide both sides
3−2a3+4a4=0
Solution
a∈/R
Show Solution
