Question
Simplify the expression
533ebdf15
Evaluate
90÷78÷41÷(b×1)÷(e×1)÷df
Any expression multiplied by 1 remains the same
90÷78÷41÷b÷(e×1)÷df
Multiply the numbers
90÷78÷41÷b÷e÷df
Divide the terms
More Steps

Evaluate
90÷78
Rewrite the expression
7890
Cancel out the common factor 6
1315
1315÷41÷b÷e÷df
Divide the terms
More Steps

Evaluate
1315÷41
Multiply by the reciprocal
1315×411
To multiply the fractions,multiply the numerators and denominators separately
13×4115
Multiply the numbers
53315
53315÷b÷e÷df
Divide the terms
More Steps

Evaluate
53315÷b
Multiply by the reciprocal
53315×b1
Multiply the terms
533b15
533b15÷e÷df
Divide the terms
More Steps

Evaluate
533b15÷e
Multiply by the reciprocal
533b15×e1
Multiply the terms
533be15
Multiply the terms
533eb15
533eb15÷df
Multiply by the reciprocal
533eb15×df1
Solution
533ebdf15
Show Solution

Find the excluded values
b=0,d=0,f=0
Evaluate
90÷78÷41÷(b×1)÷(e×1)÷(df)
To find the excluded values,set the denominators equal to 0
b×1=0df=0
Any expression multiplied by 1 remains the same
b=0df=0
Separate the equation into 2 possible cases
b=0d=0f=0
Solution
b=0,d=0,f=0
Show Solution
