Question Simplify the expression 21978x2+11322x3 Evaluate 999x2×22+333x3×34Multiply the terms 21978x2+333x3×34Solution 21978x2+11322x3 Show Solution Factor the expression 666x2(33+17x) Evaluate 999x2×22+333x3×34Multiply the terms 21978x2+333x3×34Multiply the terms 21978x2+11322x3Rewrite the expression 666x2×33+666x2×17xSolution 666x2(33+17x) Show Solution Find the roots x1=−1733,x2=0Alternative Form x1≈−1.941176,x2=0 Evaluate 999x2×22+333x3×34To find the roots of the expression,set the expression equal to 0 999x2×22+333x3×34=0Multiply the terms 21978x2+333x3×34=0Multiply the terms 21978x2+11322x3=0Factor the expression 666x2(33+17x)=0Divide both sides x2(33+17x)=0Separate the equation into 2 possible cases x2=033+17x=0The only way a power can be 0 is when the base equals 0 x=033+17x=0Solve the equation More Steps Evaluate 33+17x=0Move the constant to the right-hand side and change its sign 17x=0−33Removing 0 doesn't change the value,so remove it from the expression 17x=−33Divide both sides 1717x=17−33Divide the numbers x=17−33Use b−a=−ba=−ba to rewrite the fraction x=−1733 x=0x=−1733Solution x1=−1733,x2=0Alternative Form x1≈−1.941176,x2=0 Show Solution