Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
a1=956−2757,a2=956+2757
Alternative Form
a1≈0.108082,a2≈12.336363
Evaluate
9a2−112a+12=0
Substitute a=9,b=−112 and c=12 into the quadratic formula a=2a−b±b2−4ac
a=2×9112±(−112)2−4×9×12
Simplify the expression
a=18112±(−112)2−4×9×12
Simplify the expression
More Steps

Evaluate
(−112)2−4×9×12
Multiply the terms
More Steps

Multiply the terms
4×9×12
Multiply the terms
36×12
Multiply the numbers
432
(−112)2−432
Rewrite the expression
1122−432
Evaluate the power
12544−432
Subtract the numbers
12112
a=18112±12112
Simplify the radical expression
More Steps

Evaluate
12112
Write the expression as a product where the root of one of the factors can be evaluated
16×757
Write the number in exponential form with the base of 4
42×757
The root of a product is equal to the product of the roots of each factor
42×757
Reduce the index of the radical and exponent with 2
4757
a=18112±4757
Separate the equation into 2 possible cases
a=18112+4757a=18112−4757
Simplify the expression
More Steps

Evaluate
a=18112+4757
Divide the terms
More Steps

Evaluate
18112+4757
Rewrite the expression
182(56+2757)
Cancel out the common factor 2
956+2757
a=956+2757
a=956+2757a=18112−4757
Simplify the expression
More Steps

Evaluate
a=18112−4757
Divide the terms
More Steps

Evaluate
18112−4757
Rewrite the expression
182(56−2757)
Cancel out the common factor 2
956−2757
a=956−2757
a=956+2757a=956−2757
Solution
a1=956−2757,a2=956+2757
Alternative Form
a1≈0.108082,a2≈12.336363
Show Solution
