Question
Simplify the expression
7533u2−3u
Evaluate
9u×93u×9−3u
Solution
More Steps

Evaluate
9u×93u×9
Multiply the terms
More Steps

Evaluate
9×93×9
Multiply the terms
837×9
Multiply the numbers
7533
7533u×u
Multiply the terms
7533u2
7533u2−3u
Show Solution

Factor the expression
3u(2511u−1)
Evaluate
9u×93u×9−3u
Multiply
More Steps

Evaluate
9u×93u×9
Multiply the terms
More Steps

Evaluate
9×93×9
Multiply the terms
837×9
Multiply the numbers
7533
7533u×u
Multiply the terms
7533u2
7533u2−3u
Rewrite the expression
3u×2511u−3u
Solution
3u(2511u−1)
Show Solution

Find the roots
u1=0,u2=25111
Alternative Form
u1=0,u2≈0.000398
Evaluate
9u×93u×9−3u
To find the roots of the expression,set the expression equal to 0
9u×93u×9−3u=0
Multiply
More Steps

Multiply the terms
9u×93u×9
Multiply the terms
More Steps

Evaluate
9×93×9
Multiply the terms
837×9
Multiply the numbers
7533
7533u×u
Multiply the terms
7533u2
7533u2−3u=0
Factor the expression
More Steps

Evaluate
7533u2−3u
Rewrite the expression
3u×2511u−3u
Factor out 3u from the expression
3u(2511u−1)
3u(2511u−1)=0
When the product of factors equals 0,at least one factor is 0
3u=02511u−1=0
Solve the equation for u
u=02511u−1=0
Solve the equation for u
More Steps

Evaluate
2511u−1=0
Move the constant to the right-hand side and change its sign
2511u=0+1
Removing 0 doesn't change the value,so remove it from the expression
2511u=1
Divide both sides
25112511u=25111
Divide the numbers
u=25111
u=0u=25111
Solution
u1=0,u2=25111
Alternative Form
u1=0,u2≈0.000398
Show Solution
