Question
Find the roots
x1=916−282,x2=916+282
Alternative Form
x1≈−0.23453,x2≈3.790086
Evaluate
9x2−32x−8
To find the roots of the expression,set the expression equal to 0
9x2−32x−8=0
Substitute a=9,b=−32 and c=−8 into the quadratic formula x=2a−b±b2−4ac
x=2×932±(−32)2−4×9(−8)
Simplify the expression
x=1832±(−32)2−4×9(−8)
Simplify the expression
More Steps

Evaluate
(−32)2−4×9(−8)
Multiply
More Steps

Multiply the terms
4×9(−8)
Rewrite the expression
−4×9×8
Multiply the terms
−288
(−32)2−(−288)
Rewrite the expression
322−(−288)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
322+288
Evaluate the power
1024+288
Add the numbers
1312
x=1832±1312
Simplify the radical expression
More Steps

Evaluate
1312
Write the expression as a product where the root of one of the factors can be evaluated
16×82
Write the number in exponential form with the base of 4
42×82
The root of a product is equal to the product of the roots of each factor
42×82
Reduce the index of the radical and exponent with 2
482
x=1832±482
Separate the equation into 2 possible cases
x=1832+482x=1832−482
Simplify the expression
More Steps

Evaluate
x=1832+482
Divide the terms
More Steps

Evaluate
1832+482
Rewrite the expression
182(16+282)
Cancel out the common factor 2
916+282
x=916+282
x=916+282x=1832−482
Simplify the expression
More Steps

Evaluate
x=1832−482
Divide the terms
More Steps

Evaluate
1832−482
Rewrite the expression
182(16−282)
Cancel out the common factor 2
916−282
x=916−282
x=916+282x=916−282
Solution
x1=916−282,x2=916+282
Alternative Form
x1≈−0.23453,x2≈3.790086
Show Solution
