Question
Solve the equation
Solve for x
Solve for y
x=3y3+y
Evaluate
9x(3×3y)−3y=9
Remove the parentheses
9x×3×3y−3y=9
Multiply
More Steps

Evaluate
9x×3×3y
Multiply the terms
27x×3y
Cancel out the common factor 3
9xy
9xy−3y=9
Rewrite the expression
9yx−3y=9
Move the expression to the right-hand side and change its sign
9yx=9+3y
Divide both sides
9y9yx=9y9+3y
Divide the numbers
x=9y9+3y
Solution
More Steps

Evaluate
9y9+3y
Rewrite the expression
9y3(3+y)
Cancel out the common factor 3
3y3+y
x=3y3+y
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
9x(3×3y)−3y=9
Remove the parentheses
9x×3×3y−3y=9
Multiply
More Steps

Evaluate
9x×3×3y
Multiply the terms
27x×3y
Cancel out the common factor 3
9xy
9xy−3y=9
To test if the graph of 9xy−3y=9 is symmetry with respect to the origin,substitute -x for x and -y for y
9(−x)(−y)−3(−y)=9
Evaluate
More Steps

Evaluate
9(−x)(−y)−3(−y)
Multiply the terms
9xy−3(−y)
Multiply the numbers
9xy−(−3y)
Rewrite the expression
9xy+3y
9xy+3y=9
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=3sin(2θ)sin(θ)+sin2(θ)+18sin(2θ)r=3sin(2θ)sin(θ)−sin2(θ)+18sin(2θ)
Evaluate
9x(3×3y)−3y=9
Evaluate
More Steps

Evaluate
9x(3×3y)−3y
Remove the parentheses
9x×3×3y−3y
Multiply
More Steps

Evaluate
9x×3×3y
Multiply the terms
27x×3y
Cancel out the common factor 3
9xy
9xy−3y
9xy−3y=9
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
9cos(θ)×rsin(θ)×r−3sin(θ)×r=9
Factor the expression
9cos(θ)sin(θ)×r2−3sin(θ)×r=9
Simplify the expression
29sin(2θ)×r2−3sin(θ)×r=9
Subtract the terms
29sin(2θ)×r2−3sin(θ)×r−9=9−9
Evaluate
29sin(2θ)×r2−3sin(θ)×r−9=0
Solve using the quadratic formula
r=9sin(2θ)3sin(θ)±(−3sin(θ))2−4×29sin(2θ)(−9)
Simplify
r=9sin(2θ)3sin(θ)±9sin2(θ)+162sin(2θ)
Separate the equation into 2 possible cases
r=9sin(2θ)3sin(θ)+9sin2(θ)+162sin(2θ)r=9sin(2θ)3sin(θ)−9sin2(θ)+162sin(2θ)
Evaluate
More Steps

Evaluate
9sin(2θ)3sin(θ)+9sin2(θ)+162sin(2θ)
Simplify the root
More Steps

Evaluate
9sin2(θ)+162sin(2θ)
Factor the expression
9(sin2(θ)+18sin(2θ))
Write the number in exponential form with the base of 3
32(sin2(θ)+18sin(2θ))
Calculate
3sin2(θ)+18sin(2θ)
9sin(2θ)3sin(θ)+3sin2(θ)+18sin(2θ)
Factor
9sin(2θ)3(sin(θ)+sin2(θ)+18sin(2θ))
Reduce the fraction
3sin(2θ)sin(θ)+sin2(θ)+18sin(2θ)
r=3sin(2θ)sin(θ)+sin2(θ)+18sin(2θ)r=9sin(2θ)3sin(θ)−9sin2(θ)+162sin(2θ)
Solution
More Steps

Evaluate
9sin(2θ)3sin(θ)−9sin2(θ)+162sin(2θ)
Simplify the root
More Steps

Evaluate
9sin2(θ)+162sin(2θ)
Factor the expression
9(sin2(θ)+18sin(2θ))
Write the number in exponential form with the base of 3
32(sin2(θ)+18sin(2θ))
Calculate
3sin2(θ)+18sin(2θ)
9sin(2θ)3sin(θ)−3sin2(θ)+18sin(2θ)
Factor
9sin(2θ)3(sin(θ)−sin2(θ)+18sin(2θ))
Reduce the fraction
3sin(2θ)sin(θ)−sin2(θ)+18sin(2θ)
r=3sin(2θ)sin(θ)+sin2(θ)+18sin(2θ)r=3sin(2θ)sin(θ)−sin2(θ)+18sin(2θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−3x−13y
Calculate
9x(3×3y)−3y=9
Simplify the expression
9xy−3y=9
Take the derivative of both sides
dxd(9xy−3y)=dxd(9)
Calculate the derivative
More Steps

Evaluate
dxd(9xy−3y)
Use differentiation rules
dxd(9xy)+dxd(−3y)
Evaluate the derivative
More Steps

Evaluate
dxd(9xy)
Use differentiation rules
dxd(9x)×y+9x×dxd(y)
Evaluate the derivative
9y+9x×dxd(y)
Evaluate the derivative
9y+9xdxdy
9y+9xdxdy+dxd(−3y)
Evaluate the derivative
More Steps

Evaluate
dxd(−3y)
Use differentiation rules
dyd(−3y)×dxdy
Evaluate the derivative
−3dxdy
9y+9xdxdy−3dxdy
9y+9xdxdy−3dxdy=dxd(9)
Calculate the derivative
9y+9xdxdy−3dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
9y+(9x−3)dxdy=0
Move the constant to the right side
(9x−3)dxdy=0−9y
Removing 0 doesn't change the value,so remove it from the expression
(9x−3)dxdy=−9y
Divide both sides
9x−3(9x−3)dxdy=9x−3−9y
Divide the numbers
dxdy=9x−3−9y
Solution
More Steps

Evaluate
9x−3−9y
Rewrite the expression
3(3x−1)−9y
Cancel out the common factor 3
3x−1−3y
Use b−a=−ba=−ba to rewrite the fraction
−3x−13y
dxdy=−3x−13y
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=9x2−6x+118y
Calculate
9x(3×3y)−3y=9
Simplify the expression
9xy−3y=9
Take the derivative of both sides
dxd(9xy−3y)=dxd(9)
Calculate the derivative
More Steps

Evaluate
dxd(9xy−3y)
Use differentiation rules
dxd(9xy)+dxd(−3y)
Evaluate the derivative
More Steps

Evaluate
dxd(9xy)
Use differentiation rules
dxd(9x)×y+9x×dxd(y)
Evaluate the derivative
9y+9x×dxd(y)
Evaluate the derivative
9y+9xdxdy
9y+9xdxdy+dxd(−3y)
Evaluate the derivative
More Steps

Evaluate
dxd(−3y)
Use differentiation rules
dyd(−3y)×dxdy
Evaluate the derivative
−3dxdy
9y+9xdxdy−3dxdy
9y+9xdxdy−3dxdy=dxd(9)
Calculate the derivative
9y+9xdxdy−3dxdy=0
Collect like terms by calculating the sum or difference of their coefficients
9y+(9x−3)dxdy=0
Move the constant to the right side
(9x−3)dxdy=0−9y
Removing 0 doesn't change the value,so remove it from the expression
(9x−3)dxdy=−9y
Divide both sides
9x−3(9x−3)dxdy=9x−3−9y
Divide the numbers
dxdy=9x−3−9y
Divide the numbers
More Steps

Evaluate
9x−3−9y
Rewrite the expression
3(3x−1)−9y
Cancel out the common factor 3
3x−1−3y
Use b−a=−ba=−ba to rewrite the fraction
−3x−13y
dxdy=−3x−13y
Take the derivative of both sides
dxd(dxdy)=dxd(−3x−13y)
Calculate the derivative
dx2d2y=dxd(−3x−13y)
Use differentiation rules
dx2d2y=−(3x−1)2dxd(3y)×(3x−1)−3y×dxd(3x−1)
Calculate the derivative
More Steps

Evaluate
dxd(3y)
Simplify
3×dxd(y)
Calculate
3dxdy
dx2d2y=−(3x−1)23dxdy×(3x−1)−3y×dxd(3x−1)
Calculate the derivative
More Steps

Evaluate
dxd(3x−1)
Use differentiation rules
dxd(3x)+dxd(−1)
Evaluate the derivative
3+dxd(−1)
Use dxd(c)=0 to find derivative
3+0
Evaluate
3
dx2d2y=−(3x−1)23dxdy×(3x−1)−3y×3
Calculate
More Steps

Evaluate
3dxdy×(3x−1)
Apply the distributive property
3dxdy×3x−3dxdy×1
Multiply the terms
9xdxdy−3dxdy×1
Any expression multiplied by 1 remains the same
9xdxdy−3dxdy
dx2d2y=−(3x−1)29xdxdy−3dxdy−3y×3
Calculate
dx2d2y=−(3x−1)29xdxdy−3dxdy−9y
Use equation dxdy=−3x−13y to substitute
dx2d2y=−(3x−1)29x(−3x−13y)−3(−3x−13y)−9y
Solution
More Steps

Calculate
−(3x−1)29x(−3x−13y)−3(−3x−13y)−9y
Multiply
More Steps

Multiply the terms
9x(−3x−13y)
Any expression multiplied by 1 remains the same
−9x×3x−13y
Multiply the terms
−3x−127xy
−(3x−1)2−3x−127xy−3(−3x−13y)−9y
Multiply the terms
More Steps

Evaluate
−3(−3x−13y)
Multiplying or dividing an even number of negative terms equals a positive
3×3x−13y
Multiply the terms
3x−13×3y
Multiply the terms
3x−19y
−(3x−1)2−3x−127xy+3x−19y−9y
Calculate the sum or difference
More Steps

Evaluate
−3x−127xy+3x−19y−9y
Reduce fractions to a common denominator
−3x−127xy+3x−19y−3x−19y(3x−1)
Write all numerators above the common denominator
3x−1−27xy+9y−9y(3x−1)
Multiply the terms
3x−1−27xy+9y−(27xy−9y)
Calculate the sum or difference
3x−1−54xy+18y
Factor the expression
3x−1−18y(3x−1)
Reduce the fraction
−18y
−(3x−1)2−18y
Use b−a=−ba=−ba to rewrite the fraction
−(−(3x−1)218y)
Calculate
(3x−1)218y
Expand the expression
More Steps

Evaluate
(3x−1)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(3x)2−2×3x×1+12
Calculate
9x2−6x+1
9x2−6x+118y
dx2d2y=9x2−6x+118y
Show Solution

Conic
2(x′−62)2−2(y′+62)2=1
Evaluate
9x(3×3y)−3y=9
Move the expression to the left side
9x(3×3y)−3y−9=0
Calculate
More Steps

Calculate
9x(3×3y)−3y−9
Multiply the terms
More Steps

Multiply the terms
3×3y
Cancel out the common factor 3
1×y
Multiply the terms
y
9xy−3y−9
9xy−3y−9=0
The coefficients A,B and C of the general equation are A=0,B=9 and C=0
A=0B=9C=0
To find the angle of rotation θ,substitute the values of A,B and C into the formula cot(2θ)=BA−C
cot(2θ)=90−0
Calculate
cot(2θ)=0
Using the unit circle,find the smallest positive angle for which the cotangent is 0
2θ=2π
Calculate
θ=4π
To rotate the axes,use the equation of rotation and substitute 4π for θ
x=x′cos(4π)−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′sin(4π)y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′sin(4π)+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′cos(4π)
Calculate
x=x′×22−y′×22y=x′×22+y′×22
Substitute x and y into the original equation 9xy−3y−9=0
9(x′×22−y′×22)(x′×22+y′×22)−3(x′×22+y′×22)−9=0
Calculate
More Steps

Calculate
9(x′×22−y′×22)(x′×22+y′×22)−3(x′×22+y′×22)−9
Use the commutative property to reorder the terms
9(22x′−y′×22)(x′×22+y′×22)−3(x′×22+y′×22)−9
Use the commutative property to reorder the terms
9(22x′−22y′)(x′×22+y′×22)−3(x′×22+y′×22)−9
Use the commutative property to reorder the terms
9(22x′−22y′)(22x′+y′×22)−3(x′×22+y′×22)−9
Use the commutative property to reorder the terms
9(22x′−22y′)(22x′+22y′)−3(x′×22+y′×22)−9
Use the commutative property to reorder the terms
9(22x′−22y′)(22x′+22y′)−3(22x′+y′×22)−9
Use the commutative property to reorder the terms
9(22x′−22y′)(22x′+22y′)−3(22x′+22y′)−9
Expand the expression
More Steps

Calculate
9(22x′−22y′)(22x′+22y′)
Simplify
(292x′−292y′)(22x′+22y′)
Apply the distributive property
292x′×22x′+292x′×22y′−292y′×22x′−292y′×22y′
Multiply the terms
29(x′)2+292x′×22y′−292y′×22x′−292y′×22y′
Multiply the numbers
29(x′)2+29x′y′−292y′×22x′−292y′×22y′
Multiply the numbers
29(x′)2+29x′y′−29y′x′−292y′×22y′
Multiply the terms
29(x′)2+29x′y′−29y′x′−29(y′)2
Subtract the terms
29(x′)2+0−29(y′)2
Removing 0 doesn't change the value,so remove it from the expression
29(x′)2−29(y′)2
29(x′)2−29(y′)2−3(22x′+22y′)−9
Expand the expression
More Steps

Calculate
−3(22x′+22y′)
Apply the distributive property
−3×22x′−3×22y′
Multiply the numbers
−232x′−3×22y′
Multiply the numbers
−232x′−232y′
29(x′)2−29(y′)2−232x′−232y′−9
29(x′)2−29(y′)2−232x′−232y′−9=0
Move the constant to the right-hand side and change its sign
29(x′)2−29(y′)2−232x′−232y′=0−(−9)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
29(x′)2−29(y′)2−232x′−232y′=0+9
Removing 0 doesn't change the value,so remove it from the expression
29(x′)2−29(y′)2−232x′−232y′=9
Use the commutative property to reorder the terms
29(x′)2−232x′−29(y′)2−232y′=9
To complete the square, the same value needs to be added to both sides
29(x′)2−232x′+41−29(y′)2−232y′=9+41
Factor out 29 from the expression
29((x′)2−32x′+181)−29(y′)2−232y′=9+41
Use a2−2ab+b2=(a−b)2 to factor the expression
29(x′−62)2−29(y′)2−232y′=9+41
Add the numbers
More Steps

Evaluate
9+41
Reduce fractions to a common denominator
49×4+41
Write all numerators above the common denominator
49×4+1
Multiply the numbers
436+1
Add the numbers
437
29(x′−62)2−29(y′)2−232y′=437
To complete the square, the same value needs to be subtract from both sides
29(x′−62)2−29(y′)2−232y′−41=437−41
Factor out −29 from the expression
29(x′−62)2−29((y′)2+32y′+181)=437−41
Use a2+2ab+b2=(a+b)2 to factor the expression
29(x′−62)2−29(y′+62)2=437−41
Subtract the numbers
More Steps

Evaluate
437−41
Write all numerators above the common denominator
437−1
Subtract the numbers
436
Reduce the numbers
19
Calculate
9
29(x′−62)2−29(y′+62)2=9
Multiply both sides of the equation by 91
29(x′−62)2−29(y′+62)2×91=9×91
Multiply the terms
More Steps

Evaluate
29(x′−62)2−29(y′+62)2×91
Use the the distributive property to expand the expression
29(x′−62)2×91−29(y′+62)2×91
Multiply the terms
More Steps

Evaluate
29×91
Reduce the numbers
21×1
Multiply the numbers
21
21(x′−62)2−29(y′+62)2×91
Multiply the terms
More Steps

Evaluate
29×91
Reduce the numbers
21×1
Multiply the numbers
21
21(x′−62)2−21(y′+62)2
21(x′−62)2−21(y′+62)2=9×91
Multiply the terms
More Steps

Evaluate
9×91
Reduce the numbers
1×1
Simplify
1
21(x′−62)2−21(y′+62)2=1
Use a=a11 to transform the expression
2(x′−62)2−21(y′+62)2=1
Solution
2(x′−62)2−2(y′+62)2=1
Show Solution
