Question
Simplify the expression
9y4−11y3
Evaluate
9y4−(99×9y2)y
Remove the parentheses
9y4−99×9y2y
Solution
More Steps

Evaluate
99×9y2y
Cancel out the common factor 9
11y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
11y3
9y4−11y3
Show Solution

Factor the expression
y3(9y−11)
Evaluate
9y4−(99×9y2)y
Remove the parentheses
9y4−99×9y2y
Cancel out the common factor 9
9y4−11y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
Evaluate
11y3
9y4−11y3
Rewrite the expression
y3×9y−y3×11
Solution
y3(9y−11)
Show Solution

Find the roots
y1=0,y2=911
Alternative Form
y1=0,y2=1.2˙
Evaluate
9y4−(99×9y2)y
To find the roots of the expression,set the expression equal to 0
9y4−(99×9y2)y=0
Cancel out the common factor 9
9y4−11y2×y=0
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
9y4−11y3=0
Factor the expression
y3(9y−11)=0
Separate the equation into 2 possible cases
y3=09y−11=0
The only way a power can be 0 is when the base equals 0
y=09y−11=0
Solve the equation
More Steps

Evaluate
9y−11=0
Move the constant to the right-hand side and change its sign
9y=0+11
Removing 0 doesn't change the value,so remove it from the expression
9y=11
Divide both sides
99y=911
Divide the numbers
y=911
y=0y=911
Solution
y1=0,y2=911
Alternative Form
y1=0,y2=1.2˙
Show Solution
