Question
Simplify the expression
88B5−12B
Evaluate
B5×88−12B
Solution
88B5−12B
Show Solution

Factor the expression
4B(22B4−3)
Evaluate
B5×88−12B
Use the commutative property to reorder the terms
88B5−12B
Rewrite the expression
4B×22B4−4B×3
Solution
4B(22B4−3)
Show Solution

Find the roots
B1=−22431944,B2=0,B3=22431944
Alternative Form
B1≈−0.60768,B2=0,B3≈0.60768
Evaluate
B5×88−12B
To find the roots of the expression,set the expression equal to 0
B5×88−12B=0
Use the commutative property to reorder the terms
88B5−12B=0
Factor the expression
4B(22B4−3)=0
Divide both sides
B(22B4−3)=0
Separate the equation into 2 possible cases
B=022B4−3=0
Solve the equation
More Steps

Evaluate
22B4−3=0
Move the constant to the right-hand side and change its sign
22B4=0+3
Removing 0 doesn't change the value,so remove it from the expression
22B4=3
Divide both sides
2222B4=223
Divide the numbers
B4=223
Take the root of both sides of the equation and remember to use both positive and negative roots
B=±4223
Simplify the expression
More Steps

Evaluate
4223
To take a root of a fraction,take the root of the numerator and denominator separately
42243
Multiply by the Conjugate
422×422343×4223
Simplify
422×422343×410648
Multiply the numbers
422×4223431944
Multiply the numbers
22431944
B=±22431944
Separate the equation into 2 possible cases
B=22431944B=−22431944
B=0B=22431944B=−22431944
Solution
B1=−22431944,B2=0,B3=22431944
Alternative Form
B1≈−0.60768,B2=0,B3≈0.60768
Show Solution
