Question
Simplify the expression
5D4+1104005
Evaluate
D4×5+1104005
Solution
5D4+1104005
Show Solution

Factor the expression
5(D4+220801)
Evaluate
D4×5+1104005
Use the commutative property to reorder the terms
5D4+1104005
Solution
5(D4+220801)
Show Solution

Find the roots
D1=−24883204−24883204i,D2=24883204+24883204i
Alternative Form
D1≈−15.327992−15.327992i,D2≈15.327992+15.327992i
Evaluate
D4×5+1104005
To find the roots of the expression,set the expression equal to 0
D4×5+1104005=0
Use the commutative property to reorder the terms
5D4+1104005=0
Move the constant to the right-hand side and change its sign
5D4=0−1104005
Removing 0 doesn't change the value,so remove it from the expression
5D4=−1104005
Divide both sides
55D4=5−1104005
Divide the numbers
D4=5−1104005
Divide the numbers
More Steps

Evaluate
5−1104005
Reduce the numbers
1−220801
Calculate
−220801
D4=−220801
Take the root of both sides of the equation and remember to use both positive and negative roots
D=±4−220801
Simplify the expression
More Steps

Evaluate
4−220801
Rewrite the expression
4220801×(22+22i)
Apply the distributive property
4220801×22+4220801×22i
Multiply the numbers
More Steps

Evaluate
4220801×22
Multiply the numbers
24220801×2
Multiply the numbers
24883204
24883204+4220801×22i
Multiply the numbers
24883204+24883204i
D=±(24883204+24883204i)
Separate the equation into 2 possible cases
D=24883204+24883204iD=−24883204−24883204i
Solution
D1=−24883204−24883204i,D2=24883204+24883204i
Alternative Form
D1≈−15.327992−15.327992i,D2≈15.327992+15.327992i
Show Solution
