Question
Simplify the expression
5D4+1104011
Evaluate
D4×5+1104011
Solution
5D4+1104011
Show Solution

Find the roots
D1=−104552005500−104552005500i,D2=104552005500+104552005500i
Alternative Form
D1≈−15.328013−15.328013i,D2≈15.328013+15.328013i
Evaluate
D4×5+1104011
To find the roots of the expression,set the expression equal to 0
D4×5+1104011=0
Use the commutative property to reorder the terms
5D4+1104011=0
Move the constant to the right-hand side and change its sign
5D4=0−1104011
Removing 0 doesn't change the value,so remove it from the expression
5D4=−1104011
Divide both sides
55D4=5−1104011
Divide the numbers
D4=5−1104011
Use b−a=−ba=−ba to rewrite the fraction
D4=−51104011
Take the root of both sides of the equation and remember to use both positive and negative roots
D=±4−51104011
Simplify the expression
More Steps

Evaluate
4−51104011
To take a root of a fraction,take the root of the numerator and denominator separately
454−1104011
Simplify the radical expression
More Steps

Evaluate
4−1104011
Rewrite the expression
41104011×(22+22i)
Apply the distributive property
41104011×22+41104011×22i
Multiply the numbers
244416044+41104011×22i
Multiply the numbers
244416044+244416044i
45244416044+244416044i
Simplify
24544416044+24544416044i
Rearrange the numbers
More Steps

Evaluate
24544416044
Multiply by the Conjugate
245×45344416044×453
Simplify
245×45344416044×4125
Multiply the numbers
245×4534552005500
Multiply the numbers
104552005500
104552005500+24544416044i
Rearrange the numbers
More Steps

Evaluate
24544416044
Multiply by the Conjugate
245×45344416044×453
Simplify
245×45344416044×4125
Multiply the numbers
245×4534552005500
Multiply the numbers
104552005500
104552005500+104552005500i
D=±(104552005500+104552005500i)
Separate the equation into 2 possible cases
D=104552005500+104552005500iD=−104552005500−104552005500i
Solution
D1=−104552005500−104552005500i,D2=104552005500+104552005500i
Alternative Form
D1≈−15.328013−15.328013i,D2≈15.328013+15.328013i
Show Solution
