Question
Simplify the expression
5D4+2104014
Evaluate
D4×5+2104014
Solution
5D4+2104014
Show Solution

Find the roots
D1=−1041052007000−1041052007000i,D2=1041052007000+1041052007000i
Alternative Form
D1≈−18.009624−18.009624i,D2≈18.009624+18.009624i
Evaluate
D4×5+2104014
To find the roots of the expression,set the expression equal to 0
D4×5+2104014=0
Use the commutative property to reorder the terms
5D4+2104014=0
Move the constant to the right-hand side and change its sign
5D4=0−2104014
Removing 0 doesn't change the value,so remove it from the expression
5D4=−2104014
Divide both sides
55D4=5−2104014
Divide the numbers
D4=5−2104014
Use b−a=−ba=−ba to rewrite the fraction
D4=−52104014
Take the root of both sides of the equation and remember to use both positive and negative roots
D=±4−52104014
Simplify the expression
More Steps

Evaluate
4−52104014
To take a root of a fraction,take the root of the numerator and denominator separately
454−2104014
Simplify the radical expression
More Steps

Evaluate
4−2104014
Rewrite the expression
42104014×(22+22i)
Apply the distributive property
42104014×22+42104014×22i
Multiply the numbers
248416056+42104014×22i
Multiply the numbers
248416056+248416056i
45248416056+248416056i
Simplify
24548416056+24548416056i
Rearrange the numbers
More Steps

Evaluate
24548416056
Multiply by the Conjugate
245×45348416056×453
Simplify
245×45348416056×4125
Multiply the numbers
245×45341052007000
Multiply the numbers
1041052007000
1041052007000+24548416056i
Rearrange the numbers
More Steps

Evaluate
24548416056
Multiply by the Conjugate
245×45348416056×453
Simplify
245×45348416056×4125
Multiply the numbers
245×45341052007000
Multiply the numbers
1041052007000
1041052007000+1041052007000i
D=±(1041052007000+1041052007000i)
Separate the equation into 2 possible cases
D=1041052007000+1041052007000iD=−1041052007000−1041052007000i
Solution
D1=−1041052007000−1041052007000i,D2=1041052007000+1041052007000i
Alternative Form
D1≈−18.009624−18.009624i,D2≈18.009624+18.009624i
Show Solution
