Question
Solve the equation
Solve for K
Solve for k
Solve for y
K=144+21yk−42y
Evaluate
K−(3×2y)k+3y=72
Remove the parentheses
K−3×2yk+3y=72
Multiply the terms
More Steps

Evaluate
3×2yk
Multiply the terms
23yk
Multiply the terms
23yk
K−23yk+3y=72
Move the expression to the right-hand side and change its sign
K=72−(−23yk+3y)
Solution
More Steps

Evaluate
72−(−23yk+3y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
72+23yk−3y
Reduce fractions to a common denominator
7×22×2+2×73yk×7−7×23y×7×2
Multiply the numbers
142×2+2×73yk×7−7×23y×7×2
Multiply the numbers
142×2+143yk×7−7×23y×7×2
Multiply the numbers
142×2+143yk×7−143y×7×2
Write all numerators above the common denominator
142×2+3yk×7−3y×7×2
Multiply the numbers
144+3yk×7−3y×7×2
Multiply the terms
144+21yk−3y×7×2
Multiply the terms
More Steps

Evaluate
3y×7×2
Multiply the terms
21y×2
Multiply the terms
42y
144+21yk−42y
K=144+21yk−42y
Show Solution
