Question
Function
L′(s)=3Jθs2
Evaluate
L(s)=Js2θs+b
Simplify
More Steps

Evaluate
Js2θs+b
Multiply
More Steps

Evaluate
Js2θs
Multiply the terms with the same base by adding their exponents
Js2+1θ
Add the numbers
Js3θ
Js3θ+b
L(s)=Js3θ+b
Evaluate
L(s)=Jθs3+b
Take the derivative of both sides
L′(s)=dsd(Jθs3+b)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
L′(s)=dsd(Jθs3)+dsd(b)
Calculate
More Steps

Calculate
dsd(Jθs3)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
Jθ×dsd(s3)
Use dxdxn=nxn−1 to find derivative
Jθ×3s2
Multiply the terms
3Jθs2
L′(s)=3Jθs2+dsd(b)
Use dxd(c)=0 to find derivative
L′(s)=3Jθs2+0
Solution
L′(s)=3Jθs2
Show Solution
