Question
Simplify the expression
20120M3−100
Evaluate
M3×20120−100
Solution
20120M3−100
Show Solution

Factor the expression
20(1006M3−5)
Evaluate
M3×20120−100
Use the commutative property to reorder the terms
20120M3−100
Solution
20(1006M3−5)
Show Solution

Find the roots
M=100635×10062
Alternative Form
M≈0.170657
Evaluate
M3×20120−100
To find the roots of the expression,set the expression equal to 0
M3×20120−100=0
Use the commutative property to reorder the terms
20120M3−100=0
Move the constant to the right-hand side and change its sign
20120M3=0+100
Removing 0 doesn't change the value,so remove it from the expression
20120M3=100
Divide both sides
2012020120M3=20120100
Divide the numbers
M3=20120100
Cancel out the common factor 20
M3=10065
Take the 3-th root on both sides of the equation
3M3=310065
Calculate
M=310065
Solution
More Steps

Evaluate
310065
To take a root of a fraction,take the root of the numerator and denominator separately
3100635
Multiply by the Conjugate
31006×31006235×310062
The product of roots with the same index is equal to the root of the product
31006×31006235×10062
Multiply the numbers
More Steps

Evaluate
31006×310062
The product of roots with the same index is equal to the root of the product
31006×10062
Calculate the product
310063
Reduce the index of the radical and exponent with 3
1006
100635×10062
M=100635×10062
Alternative Form
M≈0.170657
Show Solution
