Question
Simplify the expression
M−M2−4
Evaluate
M−M2−0−4
Solution
M−M2−4
Show Solution

Find the roots
M1=21−215i,M2=21+215i
Alternative Form
M1≈0.5−1.936492i,M2≈0.5+1.936492i
Evaluate
M−M2−0−4
To find the roots of the expression,set the expression equal to 0
M−M2−0−4=0
Removing 0 doesn't change the value,so remove it from the expression
M−M2−4=0
Rewrite in standard form
−M2+M−4=0
Multiply both sides
M2−M+4=0
Substitute a=1,b=−1 and c=4 into the quadratic formula M=2a−b±b2−4ac
M=21±(−1)2−4×4
Simplify the expression
More Steps

Evaluate
(−1)2−4×4
Evaluate the power
1−4×4
Multiply the numbers
1−16
Subtract the numbers
−15
M=21±−15
Simplify the radical expression
More Steps

Evaluate
−15
Evaluate the power
15×−1
Evaluate the power
15×i
M=21±15×i
Separate the equation into 2 possible cases
M=21+15×iM=21−15×i
Simplify the expression
M=21+215iM=21−15×i
Simplify the expression
M=21+215iM=21−215i
Solution
M1=21−215i,M2=21+215i
Alternative Form
M1≈0.5−1.936492i,M2≈0.5+1.936492i
Show Solution
