Question
Simplify the expression
S+47606S3
Evaluate
S+S3×47606
Solution
S+47606S3
Show Solution

Factor the expression
S(1+47606S2)
Evaluate
S+S3×47606
Use the commutative property to reorder the terms
S+47606S3
Rewrite the expression
S+S×47606S2
Solution
S(1+47606S2)
Show Solution

Find the roots
S1=−4760647606i,S2=4760647606i,S3=0
Alternative Form
S1≈−0.004583i,S2≈0.004583i,S3=0
Evaluate
S+S3×47606
To find the roots of the expression,set the expression equal to 0
S+S3×47606=0
Use the commutative property to reorder the terms
S+47606S3=0
Factor the expression
S(1+47606S2)=0
Separate the equation into 2 possible cases
S=01+47606S2=0
Solve the equation
More Steps

Evaluate
1+47606S2=0
Move the constant to the right-hand side and change its sign
47606S2=0−1
Removing 0 doesn't change the value,so remove it from the expression
47606S2=−1
Divide both sides
4760647606S2=47606−1
Divide the numbers
S2=47606−1
Use b−a=−ba=−ba to rewrite the fraction
S2=−476061
Take the root of both sides of the equation and remember to use both positive and negative roots
S=±−476061
Simplify the expression
More Steps

Evaluate
−476061
Evaluate the power
476061×−1
Evaluate the power
476061×i
Evaluate the power
4760647606i
S=±4760647606i
Separate the equation into 2 possible cases
S=4760647606iS=−4760647606i
S=0S=4760647606iS=−4760647606i
Solution
S1=−4760647606i,S2=4760647606i,S3=0
Alternative Form
S1≈−0.004583i,S2≈0.004583i,S3=0
Show Solution
