Question
Function
S′(t)=2048d
Evaluate
S(t)=d(t32)2×2t3
Simplify
More Steps

Evaluate
d(t32)2×2t3
Use the commutative property to reorder the terms
2d(t32)2t3
Rewrite the expression
More Steps

Calculate
(t32)2t3
Rewrite the expression
t21024×t3
Reduce the fraction
1024t
2d×1024t
Multiply the terms
2048dt
S(t)=2048dt
Take the derivative of both sides
S′(t)=dtd(2048dt)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
S′(t)=2048d×dtd(t)
Use dxdxn=nxn−1 to find derivative
S′(t)=2048d×1
Solution
S′(t)=2048d
Show Solution
