Question
Simplify the expression
550220V4−100
Evaluate
V4×550220−100
Solution
550220V4−100
Show Solution

Factor the expression
20(27511V4−5)
Evaluate
V4×550220−100
Use the commutative property to reorder the terms
550220V4−100
Solution
20(27511V4−5)
Show Solution

Find the roots
V1=−2751145×275113,V2=2751145×275113
Alternative Form
V1≈−0.116109,V2≈0.116109
Evaluate
V4×550220−100
To find the roots of the expression,set the expression equal to 0
V4×550220−100=0
Use the commutative property to reorder the terms
550220V4−100=0
Move the constant to the right-hand side and change its sign
550220V4=0+100
Removing 0 doesn't change the value,so remove it from the expression
550220V4=100
Divide both sides
550220550220V4=550220100
Divide the numbers
V4=550220100
Cancel out the common factor 20
V4=275115
Take the root of both sides of the equation and remember to use both positive and negative roots
V=±4275115
Simplify the expression
More Steps

Evaluate
4275115
To take a root of a fraction,take the root of the numerator and denominator separately
42751145
Multiply by the Conjugate
427511×427511345×4275113
The product of roots with the same index is equal to the root of the product
427511×427511345×275113
Multiply the numbers
More Steps

Evaluate
427511×4275113
The product of roots with the same index is equal to the root of the product
427511×275113
Calculate the product
4275114
Reduce the index of the radical and exponent with 4
27511
2751145×275113
V=±2751145×275113
Separate the equation into 2 possible cases
V=2751145×275113V=−2751145×275113
Solution
V1=−2751145×275113,V2=2751145×275113
Alternative Form
V1≈−0.116109,V2≈0.116109
Show Solution
