Question
Solve the system of equations
Solve using the substitution method
Solve using the elimination method
(a1,b1)=(0,0)(a2,b2)=(1,151)
Evaluate
{a=5×3b5×3b=a2
Calculate
{a=15b5×3b=a2
Calculate
{a=15b15b=a2
Substitute the given value of a into the equation 15b=a2
15b=(15b)2
Simplify
More Steps

Evaluate
(15b)2
To raise a product to a power,raise each factor to that power
152b2
Evaluate the power
225b2
15b=225b2
Add or subtract both sides
15b−225b2=0
Factor the expression
More Steps

Evaluate
15b−225b2
Rewrite the expression
15b−15b×15b
Factor out 15b from the expression
15b(1−15b)
15b(1−15b)=0
When the product of factors equals 0,at least one factor is 0
15b=01−15b=0
Solve the equation for b
b=01−15b=0
Solve the equation for b
More Steps

Evaluate
1−15b=0
Move the constant to the right-hand side and change its sign
−15b=0−1
Removing 0 doesn't change the value,so remove it from the expression
−15b=−1
Change the signs on both sides of the equation
15b=1
Divide both sides
1515b=151
Divide the numbers
b=151
b=0b=151
Calculate
b=0∪b=151
Rearrange the terms
{a=15bb=0∪{a=15bb=151
Calculate
More Steps

Evaluate
{a=15bb=0
Substitute the given value of b into the equation a=15b
a=15×0
Calculate
a=0
Calculate
{a=0b=0
{a=0b=0∪{a=15bb=151
Calculate
More Steps

Evaluate
{a=15bb=151
Substitute the given value of b into the equation a=15b
a=15×151
Simplify the expression
a=15×15−1
Calculate
a=1
Calculate
{a=1b=151
{a=0b=0∪{a=1b=151
Check the solution
More Steps

Check the solution
{0=5×3×05×3×0=02
Simplify
{0=00=0
Evaluate
true
{a=0b=0∪{a=1b=151
Check the solution
More Steps

Check the solution
{1=5×3×1515×3×151=12
Simplify
{1=11=1
Evaluate
true
{a=0b=0∪{a=1b=151
Solution
(a1,b1)=(0,0)(a2,b2)=(1,151)
Show Solution
