Question
Solve the equation
Solve for a
Solve for b
Solve for c
a=2b1−1+4bc2a=2b1+1+4bc2
Evaluate
a=a2b−c2
Rewrite the expression
a=ba2−c2
Move the expression to the left side
a−(ba2−c2)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a−ba2+c2=0
Rewrite in standard form
−ba2+a+c2=0
Substitute a=−b,b=1 and c=c2 into the quadratic formula a=2a−b±b2−4ac
a=2(−b)−1±12−4(−b)c2
Simplify the expression
a=−2b−1±12−4(−b)c2
Simplify the expression
More Steps

Evaluate
12−4(−b)c2
1 raised to any power equals to 1
1−4(−b)c2
Use the commutative property to reorder the terms
1−(−4bc2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4bc2
a=−2b−1±1+4bc2
Separate the equation into 2 possible cases
a=−2b−1+1+4bc2a=−2b−1−1+4bc2
Simplify the expression
More Steps

Evaluate
a=−2b−1+1+4bc2
Divide the terms
More Steps

Evaluate
−2b−1+1+4bc2
Use b−a=−ba=−ba to rewrite the fraction
−2b−1+1+4bc2
Rewrite the expression
2b1−1+4bc2
a=2b1−1+4bc2
a=2b1−1+4bc2a=−2b−1−1+4bc2
Solution
a=2b1−1+4bc2a=2b1+1+4bc2
Show Solution
