Question
Function
Evaluate the derivative
Find the domain
Find the x-intercept/zero
Load more

a′=3x2−24x−4
Evaluate
a=x3−11×1×x2−4x−1×x2×1
Simplify
More Steps

Evaluate
x3−11×1×x2−4x−1×x2×1
Multiply the terms
x3−11x2−4x−1×x2×1
Multiply the terms
x3−11x2−4x−x2
Subtract the terms
More Steps

Evaluate
−11x2−x2
Collect like terms by calculating the sum or difference of their coefficients
(−11−1)x2
Subtract the numbers
−12x2
x3−12x2−4x
a=x3−12x2−4x
Take the derivative of both sides
a′=dxd(x3−12x2−4x)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
a′=dxd(x3)−dxd(12x2)−dxd(4x)
Use dxdxn=nxn−1 to find derivative
a′=3x2−dxd(12x2)−dxd(4x)
Calculate
More Steps

Calculate
dxd(12x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
12×dxd(x2)
Use dxdxn=nxn−1 to find derivative
12×2x
Multiply the terms
24x
a′=3x2−24x−dxd(4x)
Solution
More Steps

Calculate
dxd(4x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dxd(x)
Use dxdxn=nxn−1 to find derivative
4×1
Any expression multiplied by 1 remains the same
4
a′=3x2−24x−4
Show Solution

Solve the equation
a=x3−12x2−4x
Evaluate
a=x3−11×1×x2−4x−1×x2×1
Solution
More Steps

Evaluate
x3−11×1×x2−4x−1×x2×1
Multiply the terms
x3−11x2−4x−1×x2×1
Multiply the terms
x3−11x2−4x−x2
Subtract the terms
More Steps

Evaluate
−11x2−x2
Collect like terms by calculating the sum or difference of their coefficients
(−11−1)x2
Subtract the numbers
−12x2
x3−12x2−4x
a=x3−12x2−4x
Show Solution
