Question
Simplify the expression
a2−90a4
Evaluate
a2−18a4×5
Solution
a2−90a4
Show Solution

Factor the expression
a2(1−90a2)
Evaluate
a2−18a4×5
Multiply the terms
a2−90a4
Rewrite the expression
a2−a2×90a2
Solution
a2(1−90a2)
Show Solution

Find the roots
a1=−3010,a2=0,a3=3010
Alternative Form
a1≈−0.105409,a2=0,a3≈0.105409
Evaluate
a2−18a4×5
To find the roots of the expression,set the expression equal to 0
a2−18a4×5=0
Multiply the terms
a2−90a4=0
Factor the expression
a2(1−90a2)=0
Separate the equation into 2 possible cases
a2=01−90a2=0
The only way a power can be 0 is when the base equals 0
a=01−90a2=0
Solve the equation
More Steps

Evaluate
1−90a2=0
Move the constant to the right-hand side and change its sign
−90a2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−90a2=−1
Change the signs on both sides of the equation
90a2=1
Divide both sides
9090a2=901
Divide the numbers
a2=901
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±901
Simplify the expression
More Steps

Evaluate
901
To take a root of a fraction,take the root of the numerator and denominator separately
901
Simplify the radical expression
901
Simplify the radical expression
3101
Multiply by the Conjugate
310×1010
Multiply the numbers
3010
a=±3010
Separate the equation into 2 possible cases
a=3010a=−3010
a=0a=3010a=−3010
Solution
a1=−3010,a2=0,a3=3010
Alternative Form
a1≈−0.105409,a2=0,a3≈0.105409
Show Solution
