Question
Simplify the expression
10a2−a4
Evaluate
a(a×10)−a4
Remove the parentheses
a×a×10−a4
Solution
More Steps

Evaluate
a×a×10
Multiply the terms
a2×10
Use the commutative property to reorder the terms
10a2
10a2−a4
Show Solution

Factor the expression
a2(10−a2)
Evaluate
a(a×10)−a4
Remove the parentheses
a×a×10−a4
Use the commutative property to reorder the terms
a×10a−a4
Multiply the terms
More Steps

Evaluate
a×10a
Use the commutative property to reorder the terms
10a×a
Multiply the terms
10a2
10a2−a4
Rewrite the expression
a2×10−a2×a2
Solution
a2(10−a2)
Show Solution

Find the roots
a1=−10,a2=0,a3=10
Alternative Form
a1≈−3.162278,a2=0,a3≈3.162278
Evaluate
a(a×10)−(a4)
To find the roots of the expression,set the expression equal to 0
a(a×10)−(a4)=0
Use the commutative property to reorder the terms
a×10a−(a4)=0
Calculate
a×10a−a4=0
Multiply the terms
More Steps

Evaluate
a×10a
Use the commutative property to reorder the terms
10a×a
Multiply the terms
10a2
10a2−a4=0
Factor the expression
a2(10−a2)=0
Separate the equation into 2 possible cases
a2=010−a2=0
The only way a power can be 0 is when the base equals 0
a=010−a2=0
Solve the equation
More Steps

Evaluate
10−a2=0
Move the constant to the right-hand side and change its sign
−a2=0−10
Removing 0 doesn't change the value,so remove it from the expression
−a2=−10
Change the signs on both sides of the equation
a2=10
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±10
Separate the equation into 2 possible cases
a=10a=−10
a=0a=10a=−10
Solution
a1=−10,a2=0,a3=10
Alternative Form
a1≈−3.162278,a2=0,a3≈3.162278
Show Solution
