Question
Solve the system of equations
(a,b,c)=(2336,2336,5336)
Alternative Form
(a,b,c)≈(1.650964,6.603854,16.509636)
Evaluate
⎩⎨⎧abc=180c=10aa=41b
Substitute the given value of c into the equation {abc=180a=41b
{ab×10a=180a=41b
Simplify
More Steps

Evaluate
ab×10a=180
Simplify
More Steps

Evaluate
ab×10a
Multiply the terms
a2b×10
Use the commutative property to reorder the terms
10a2b
10a2b=180
{10a2b=180a=41b
Substitute the given value of a into the equation 10a2b=180
10(41b)2b=180
Simplify
More Steps

Evaluate
10(41b)2b
Multiply the terms
More Steps

Evaluate
10(41b)2
Reduce the numbers
5×8b2
Multiply the terms
85b2
85b2b
Multiply the terms
85b2×b
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
85b3
85b3=180
Cross multiply
5b3=8×180
Simplify the equation
5b3=1440
Divide both sides
55b3=51440
Divide the numbers
b3=51440
Divide the numbers
More Steps

Evaluate
51440
Reduce the numbers
1288
Calculate
288
b3=288
Take the 3-th root on both sides of the equation
3b3=3288
Calculate
b=3288
Simplify the root
More Steps

Evaluate
3288
Write the expression as a product where the root of one of the factors can be evaluated
38×36
Write the number in exponential form with the base of 2
323×36
The root of a product is equal to the product of the roots of each factor
323×336
Reduce the index of the radical and exponent with 3
2336
b=2336
Substitute the given value of b into the equation a=41b
a=41×2336
Calculate
a=2336
Substitute the given value of a into the equation c=10a
c=10×2336
Calculate
c=5336
Calculate
⎩⎨⎧a=2336b=2336c=5336
Check the solution
More Steps

Check the solution
⎩⎨⎧2336×2336×5336=1805336=10×23362336=41×2336
Simplify
⎩⎨⎧180=18016.509636=16.5096361.650964=1.650964
Evaluate
true
⎩⎨⎧a=2336b=2336c=5336
Solution
(a,b,c)=(2336,2336,5336)
Alternative Form
(a,b,c)≈(1.650964,6.603854,16.509636)
Show Solution
