Question
Solve the system of equations
(a1,b1)=(143+93,2−3+93)(a2,b2)=(143−93,−23+93)
Evaluate
{ab=7a−b7a−b=3
Solve the equation for b
More Steps

Evaluate
7a−b=3
Move the expression to the right-hand side and change its sign
−b=3−7a
Change the signs on both sides of the equation
b=−3+7a
{ab=7a−bb=−3+7a
Substitute the given value of b into the equation ab=7a−b
a(−3+7a)=7a−(−3+7a)
Simplify
More Steps

Evaluate
7a−(−3+7a)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
7a+3−7a
The sum of two opposites equals 0
More Steps

Evaluate
7a−7a
Collect like terms
(7−7)a
Add the coefficients
0×a
Calculate
0
0+3
Remove 0
3
a(−3+7a)=3
Expand the expression
More Steps

Evaluate
a(−3+7a)
Apply the distributive property
a(−3)+a×7a
Use the commutative property to reorder the terms
−3a+a×7a
Multiply the terms
More Steps

Evaluate
a×7a
Use the commutative property to reorder the terms
7a×a
Multiply the terms
7a2
−3a+7a2
−3a+7a2=3
Move the expression to the left side
−3a+7a2−3=0
Rewrite in standard form
7a2−3a−3=0
Substitute a=7,b=−3 and c=−3 into the quadratic formula a=2a−b±b2−4ac
a=2×73±(−3)2−4×7(−3)
Simplify the expression
a=143±(−3)2−4×7(−3)
Simplify the expression
More Steps

Evaluate
(−3)2−4×7(−3)
Multiply
More Steps

Multiply the terms
4×7(−3)
Rewrite the expression
−4×7×3
Multiply the terms
−84
(−3)2−(−84)
Rewrite the expression
32−(−84)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+84
Evaluate the power
9+84
Add the numbers
93
a=143±93
Separate the equation into 2 possible cases
a=143+93a=143−93
Evaluate the logic
a=143+93∪a=143−93
Rearrange the terms
{a=143+93b=−3+7a∪{a=143−93b=−3+7a
Calculate
More Steps

Evaluate
{a=143+93b=−3+7a
Substitute the given value of a into the equation b=−3+7a
b=−3+7×143+93
Calculate
b=2−3+93
Calculate
{a=143+93b=2−3+93
{a=143+93b=2−3+93∪{a=143−93b=−3+7a
Calculate
More Steps

Evaluate
{a=143−93b=−3+7a
Substitute the given value of a into the equation b=−3+7a
b=−3+7×143−93
Calculate
b=−23+93
Calculate
{a=143−93b=−23+93
{a=143+93b=2−3+93∪{a=143−93b=−23+93
Check the solution
More Steps

Check the solution
{143+93×2−3+93=7×143+93−2−3+937×143+93−2−3+93=3
Simplify
{3=33=3
Evaluate
true
{a=143+93b=2−3+93∪{a=143−93b=−23+93
Check the solution
More Steps

Check the solution
⎩⎨⎧143−93×(−23+93)=7×143−93−(−23+93)7×143−93−(−23+93)=3
Simplify
{3=33=3
Evaluate
true
{a=143+93b=2−3+93∪{a=143−93b=−23+93
Solution
(a1,b1)=(143+93,2−3+93)(a2,b2)=(143−93,−23+93)
Show Solution
