Question
Simplify the expression
a4−23040000a2
Evaluate
a4−625a2×36864
Solution
a4−23040000a2
Show Solution

Factor the expression
a2(a−4800)(a+4800)
Evaluate
a4−625a2×36864
Evaluate
a4−23040000a2
Factor out a2 from the expression
a2(a2−23040000)
Solution
More Steps

Evaluate
a2−23040000
Rewrite the expression in exponential form
a2−48002
Use a2−b2=(a−b)(a+b) to factor the expression
(a−4800)(a+4800)
a2(a−4800)(a+4800)
Show Solution

Find the roots
a1=−4800,a2=0,a3=4800
Evaluate
a4−625a2×36864
To find the roots of the expression,set the expression equal to 0
a4−625a2×36864=0
Multiply the terms
a4−23040000a2=0
Factor the expression
a2(a2−23040000)=0
Separate the equation into 2 possible cases
a2=0a2−23040000=0
The only way a power can be 0 is when the base equals 0
a=0a2−23040000=0
Solve the equation
More Steps

Evaluate
a2−23040000=0
Move the constant to the right-hand side and change its sign
a2=0+23040000
Removing 0 doesn't change the value,so remove it from the expression
a2=23040000
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±23040000
Simplify the expression
More Steps

Evaluate
23040000
Write the number in exponential form with the base of 4800
48002
Reduce the index of the radical and exponent with 2
4800
a=±4800
Separate the equation into 2 possible cases
a=4800a=−4800
a=0a=4800a=−4800
Solution
a1=−4800,a2=0,a3=4800
Show Solution
