Question
Simplify the expression
−a2b4c3−a4b3c2+a3b4c2−a3b2c4+a2b3c4+a4b2c3
Evaluate
a2(b−c)b2(c−a)c2(a−b)
Multiply the terms
a2b2c2(b−c)(c−a)(a−b)
Multiply the terms
More Steps

Evaluate
a2b2c2(b−c)
Apply the distributive property
a2b2c2b−a2b2c2×c
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
a2b3c2−a2b2c2×c
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
a2b3c2−a2b2c3
(a2b3c2−a2b2c3)(c−a)(a−b)
Multiply the terms
More Steps

Evaluate
(a2b3c2−a2b2c3)(c−a)
Apply the distributive property
a2b3c2×c−a2b3c2a−a2b2c3×c−(−a2b2c3a)
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
a2b3c3−a2b3c2a−a2b2c3×c−(−a2b2c3a)
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
a2b3c3−a3b3c2−a2b2c3×c−(−a2b2c3a)
Multiply the terms
More Steps

Evaluate
c3×c
Use the product rule an×am=an+m to simplify the expression
c3+1
Add the numbers
c4
a2b3c3−a3b3c2−a2b2c4−(−a2b2c3a)
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
a2b3c3−a3b3c2−a2b2c4−(−a3b2c3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a2b3c3−a3b3c2−a2b2c4+a3b2c3
(a2b3c3−a3b3c2−a2b2c4+a3b2c3)(a−b)
Apply the distributive property
a2b3c3a−a2b3c3b−a3b3c2a−(−a3b3c2b)−a2b2c4a−(−a2b2c4b)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
a3b3c3−a2b3c3b−a3b3c2a−(−a3b3c2b)−a2b2c4a−(−a2b2c4b)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
b3×b
Use the product rule an×am=an+m to simplify the expression
b3+1
Add the numbers
b4
a3b3c3−a2b4c3−a3b3c2a−(−a3b3c2b)−a2b2c4a−(−a2b2c4b)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
a3b3c3−a2b4c3−a4b3c2−(−a3b3c2b)−a2b2c4a−(−a2b2c4b)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
b3×b
Use the product rule an×am=an+m to simplify the expression
b3+1
Add the numbers
b4
a3b3c3−a2b4c3−a4b3c2−(−a3b4c2)−a2b2c4a−(−a2b2c4b)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
a3b3c3−a2b4c3−a4b3c2−(−a3b4c2)−a3b2c4−(−a2b2c4b)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
a3b3c3−a2b4c3−a4b3c2−(−a3b4c2)−a3b2c4−(−a2b3c4)+a3b2c3a−a3b2c3b
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
a3b3c3−a2b4c3−a4b3c2−(−a3b4c2)−a3b2c4−(−a2b3c4)+a4b2c3−a3b2c3b
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
a3b3c3−a2b4c3−a4b3c2−(−a3b4c2)−a3b2c4−(−a2b3c4)+a4b2c3−a3b3c3
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a3b3c3−a2b4c3−a4b3c2+a3b4c2−a3b2c4+a2b3c4+a4b2c3−a3b3c3
The sum of two opposites equals 0
More Steps

Evaluate
a3b3c3−a3b3c3
Collect like terms
(1−1)a3b3c3
Add the coefficients
0×a3b3c3
Calculate
0
0−a2b4c3−a4b3c2+a3b4c2−a3b2c4+a2b3c4+a4b2c3
Solution
−a2b4c3−a4b3c2+a3b4c2−a3b2c4+a2b3c4+a4b2c3
Show Solution
