Question
Find the roots
a1=4−210,a2=4+210
Alternative Form
a1≈−2.324555,a2≈10.324555
Evaluate
a2−8a−24
To find the roots of the expression,set the expression equal to 0
a2−8a−24=0
Substitute a=1,b=−8 and c=−24 into the quadratic formula a=2a−b±b2−4ac
a=28±(−8)2−4(−24)
Simplify the expression
More Steps

Evaluate
(−8)2−4(−24)
Multiply the numbers
More Steps

Evaluate
4(−24)
Multiplying or dividing an odd number of negative terms equals a negative
−4×24
Multiply the numbers
−96
(−8)2−(−96)
Rewrite the expression
82−(−96)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
82+96
Evaluate the power
64+96
Add the numbers
160
a=28±160
Simplify the radical expression
More Steps

Evaluate
160
Write the expression as a product where the root of one of the factors can be evaluated
16×10
Write the number in exponential form with the base of 4
42×10
The root of a product is equal to the product of the roots of each factor
42×10
Reduce the index of the radical and exponent with 2
410
a=28±410
Separate the equation into 2 possible cases
a=28+410a=28−410
Simplify the expression
More Steps

Evaluate
a=28+410
Divide the terms
More Steps

Evaluate
28+410
Rewrite the expression
22(4+210)
Reduce the fraction
4+210
a=4+210
a=4+210a=28−410
Simplify the expression
More Steps

Evaluate
a=28−410
Divide the terms
More Steps

Evaluate
28−410
Rewrite the expression
22(4−210)
Reduce the fraction
4−210
a=4−210
a=4+210a=4−210
Solution
a1=4−210,a2=4+210
Alternative Form
a1≈−2.324555,a2≈10.324555
Show Solution
