Question
Solve the inequality
Solve for a
Solve for b
Solve for c
a≥2∣b∣×bb1+4c2+∣b∣a≤2∣b∣×b−b1+4c2+∣b∣
Evaluate
a2b2−c2≥ab
Rewrite the expression
b2a2−c2≥ba
Move the expression to the left side
b2a2−c2−ba≥0
Move the constant to the right side
b2a2−ba≥0−(−c2)
Add the terms
b2a2−ba≥c2
Evaluate
a2−b1×a≥b2c2
Add the same value to both sides
a2−b1×a+(2b)21≥b2c2+(2b)21
Evaluate
a2−b1×a+(2b)21≥(2b)21+4c2
Evaluate
(a−2b1)2≥(2b)21+4c2
Take the 2-th root on both sides of the inequality
(a−2b1)2≥(2b)21+4c2
Calculate
a−2b1≥2∣b∣1+4c2
Separate the inequality into 2 possible cases
a−2b1≥2∣b∣1+4c2a−2b1≤−2∣b∣1+4c2
Calculate
More Steps

Evaluate
a−2b1≥2∣b∣1+4c2
Move the constant to the right side
a≥2∣b∣1+4c2+2b1
Add the terms
More Steps

Evaluate
2∣b∣1+4c2+2b1
Reduce fractions to a common denominator
2∣b∣×b1+4c2×b+2b∣b∣∣b∣
Rewrite the expression
2∣b∣×b1+4c2×b+2∣b∣×b∣b∣
Write all numerators above the common denominator
2∣b∣×b1+4c2×b+∣b∣
Use the commutative property to reorder the terms
2∣b∣×bb1+4c2+∣b∣
a≥2∣b∣×bb1+4c2+∣b∣
a≥2∣b∣×bb1+4c2+∣b∣a−2b1≤−2∣b∣1+4c2
Solution
More Steps

Evaluate
a−2b1≤−2∣b∣1+4c2
Move the constant to the right side
a≤−2∣b∣1+4c2+2b1
Add the terms
More Steps

Evaluate
−2∣b∣1+4c2+2b1
Reduce fractions to a common denominator
−2∣b∣×b1+4c2×b+2b∣b∣∣b∣
Rewrite the expression
−2∣b∣×b1+4c2×b+2∣b∣×b∣b∣
Write all numerators above the common denominator
2∣b∣×b−1+4c2×b+∣b∣
Use the commutative property to reorder the terms
2∣b∣×b−b1+4c2+∣b∣
a≤2∣b∣×b−b1+4c2+∣b∣
a≥2∣b∣×bb1+4c2+∣b∣a≤2∣b∣×b−b1+4c2+∣b∣
Show Solution
