Question
Solve the equation
a1=−287+7673,a2=287+7673
Alternative Form
a1≈−0.490465,a2≈0.490465
Evaluate
a2−14a4×4=−3
Multiply the terms
a2−56a4=−3
Move the expression to the left side
a2−56a4−(−3)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a2−56a4+3=0
Solve the equation using substitution t=a2
t−56t2+3=0
Rewrite in standard form
−56t2+t+3=0
Multiply both sides
56t2−t−3=0
Substitute a=56,b=−1 and c=−3 into the quadratic formula t=2a−b±b2−4ac
t=2×561±(−1)2−4×56(−3)
Simplify the expression
t=1121±(−1)2−4×56(−3)
Simplify the expression
More Steps

Evaluate
(−1)2−4×56(−3)
Evaluate the power
1−4×56(−3)
Multiply
More Steps

Multiply the terms
4×56(−3)
Rewrite the expression
−4×56×3
Multiply the terms
−672
1−(−672)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+672
Add the numbers
673
t=1121±673
Separate the equation into 2 possible cases
t=1121+673t=1121−673
Substitute back
a2=1121+673a2=1121−673
Solve the equation for a
More Steps

Substitute back
a2=1121+673
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±1121+673
Simplify the expression
More Steps

Evaluate
1121+673
To take a root of a fraction,take the root of the numerator and denominator separately
1121+673
Simplify the radical expression
471+673
Multiply by the Conjugate
47×71+673×7
Multiply the numbers
47×77+7673
Multiply the numbers
287+7673
a=±287+7673
Separate the equation into 2 possible cases
a=287+7673a=−287+7673
a=287+7673a=−287+7673a2=1121−673
Since the left-hand side is always positive or 0,and the right-hand side is always negative,the statement is false for any value of a
a=287+7673a=−287+7673a∈/R
Find the union
a=287+7673a=−287+7673
Solution
a1=−287+7673,a2=287+7673
Alternative Form
a1≈−0.490465,a2≈0.490465
Show Solution
