Question
Simplify the expression
a4a6−125−a7−3a5
Evaluate
a2−a325×a21×5a−a2a5−3a
Divide the terms
More Steps

Evaluate
a2a5
Use the product rule aman=an−m to simplify the expression
1a5−2
Simplify
a5−2
Divide the terms
a3
a2−a325×a21×5a−a3−3a
Multiply the terms
More Steps

Multiply the terms
−a325×a21×5a
Multiply the terms
More Steps

Evaluate
a325×a21×5a
Multiply the terms
a525×5a
Multiply the terms
a5125×a
Cancel out the common factor a
a4125×1
Multiply the terms
a4125
−a4125
a2−a4125−a3−3a
Reduce fractions to a common denominator
a4a2×a4−a4125−a4a3×a4−a43a×a4
Write all numerators above the common denominator
a4a2×a4−125−a3×a4−3a×a4
Multiply the terms
More Steps

Evaluate
a2×a4
Use the product rule an×am=an+m to simplify the expression
a2+4
Add the numbers
a6
a4a6−125−a3×a4−3a×a4
Multiply the terms
More Steps

Evaluate
a3×a4
Use the product rule an×am=an+m to simplify the expression
a3+4
Add the numbers
a7
a4a6−125−a7−3a×a4
Solution
More Steps

Evaluate
a×a4
Use the product rule an×am=an+m to simplify the expression
a1+4
Add the numbers
a5
a4a6−125−a7−3a5
Show Solution

Find the excluded values
a=0
Evaluate
a2−a325×a21×5a−a2a5−3a
To find the excluded values,set the denominators equal to 0
a3=0a2=0
The only way a power can be 0 is when the base equals 0
a=0a2=0
The only way a power can be 0 is when the base equals 0
a=0a=0
Solution
a=0
Show Solution
