Question
Simplify the expression
a4a6−125
Evaluate
a2−a325×a21×5a
Multiply the terms
More Steps

Multiply the terms
a325×a21×5a
Multiply the terms
More Steps

Multiply the terms
a325×a21
Multiply the terms
a3×a225
Multiply the terms
a525
a525×5a
Multiply the terms
More Steps

Multiply the terms
a525×5
Multiply the terms
a525×5
Multiply the terms
a5125
a5125×a
Cancel out the common factor a
a4125×1
Multiply the terms
a4125
a2−a4125
Reduce fractions to a common denominator
a4a2×a4−a4125
Write all numerators above the common denominator
a4a2×a4−125
Solution
More Steps

Evaluate
a2×a4
Use the product rule an×am=an+m to simplify the expression
a2+4
Add the numbers
a6
a4a6−125
Show Solution

Find the excluded values
a=0
Evaluate
a2−a325×a21×5a
To find the excluded values,set the denominators equal to 0
a3=0a2=0
The only way a power can be 0 is when the base equals 0
a=0a2=0
The only way a power can be 0 is when the base equals 0
a=0a=0
Solution
a=0
Show Solution

Find the roots
a1=−5,a2=5
Alternative Form
a1≈−2.236068,a2≈2.236068
Evaluate
a2−a325×a21×5a
To find the roots of the expression,set the expression equal to 0
a2−a325×a21×5a=0
Find the domain
More Steps

Evaluate
{a3=0a2=0
The only way a power can not be 0 is when the base not equals 0
{a=0a2=0
The only way a power can not be 0 is when the base not equals 0
{a=0a=0
Find the intersection
a=0
a2−a325×a21×5a=0,a=0
Calculate
a2−a325×a21×5a=0
Multiply the terms
More Steps

Multiply the terms
a325×a21×5a
Multiply the terms
More Steps

Multiply the terms
a325×a21
Multiply the terms
a3×a225
Multiply the terms
a525
a525×5a
Multiply the terms
More Steps

Multiply the terms
a525×5
Multiply the terms
a525×5
Multiply the terms
a5125
a5125×a
Cancel out the common factor a
a4125×1
Multiply the terms
a4125
a2−a4125=0
Subtract the terms
More Steps

Simplify
a2−a4125
Reduce fractions to a common denominator
a4a2×a4−a4125
Write all numerators above the common denominator
a4a2×a4−125
Multiply the terms
More Steps

Evaluate
a2×a4
Use the product rule an×am=an+m to simplify the expression
a2+4
Add the numbers
a6
a4a6−125
a4a6−125=0
Cross multiply
a6−125=a4×0
Simplify the equation
a6−125=0
Move the constant to the right side
a6=125
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±6125
Simplify the expression
More Steps

Evaluate
6125
Write the number in exponential form with the base of 5
653
Reduce the index of the radical and exponent with 3
5
a=±5
Separate the equation into 2 possible cases
a=5a=−5
Check if the solution is in the defined range
a=5a=−5,a=0
Find the intersection of the solution and the defined range
a=5a=−5
Solution
a1=−5,a2=5
Alternative Form
a1≈−2.236068,a2≈2.236068
Show Solution
