Question
Find the roots
a1=225−541,a2=225+541
Alternative Form
a1≈−3.507811,a2≈28.507811
Evaluate
a2−25a−100
To find the roots of the expression,set the expression equal to 0
a2−25a−100=0
Substitute a=1,b=−25 and c=−100 into the quadratic formula a=2a−b±b2−4ac
a=225±(−25)2−4(−100)
Simplify the expression
More Steps

Evaluate
(−25)2−4(−100)
Multiply the numbers
More Steps

Evaluate
4(−100)
Multiplying or dividing an odd number of negative terms equals a negative
−4×100
Multiply the numbers
−400
(−25)2−(−400)
Rewrite the expression
252−(−400)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
252+400
Evaluate the power
625+400
Add the numbers
1025
a=225±1025
Simplify the radical expression
More Steps

Evaluate
1025
Write the expression as a product where the root of one of the factors can be evaluated
25×41
Write the number in exponential form with the base of 5
52×41
The root of a product is equal to the product of the roots of each factor
52×41
Reduce the index of the radical and exponent with 2
541
a=225±541
Separate the equation into 2 possible cases
a=225+541a=225−541
Solution
a1=225−541,a2=225+541
Alternative Form
a1≈−3.507811,a2≈28.507811
Show Solution
