Question
Solve the equation
Solve for a
Solve for b
a=213+169+4b2a=213−169+4b2
Evaluate
a2−b2=13a
Move the expression to the left side
a2−b2−13a=0
Rewrite in standard form
a2−13a−b2=0
Substitute a=1,b=−13 and c=−b2 into the quadratic formula a=2a−b±b2−4ac
a=213±(−13)2−4(−b2)
Simplify the expression
More Steps

Evaluate
(−13)2−4(−b2)
Use the commutative property to reorder the terms
(−13)2−(−4b2)
Rewrite the expression
132−(−4b2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
132+4b2
Evaluate the power
169+4b2
a=213±169+4b2
Solution
a=213+169+4b2a=213−169+4b2
Show Solution
