Question
Simplify the expression
a3b3−3a4b2+3a5b−a6−b3
Evaluate
a3(b−a)3−b3
Solution
More Steps

Calculate
a3(b−a)3
Simplify
a3(b3−3b2a+3ba2−a3)
Apply the distributive property
a3b3−a3×3b2a+a3×3ba2−a3×a3
Multiply the terms
More Steps

Evaluate
a3×3b2a
Use the commutative property to reorder the terms
3a3b2a
Multiply the terms
3a4b2
a3b3−3a4b2+a3×3ba2−a3×a3
Multiply the terms
More Steps

Evaluate
a3×3ba2
Use the commutative property to reorder the terms
3a3ba2
Multiply the terms
3a5b
a3b3−3a4b2+3a5b−a3×a3
Multiply the terms
More Steps

Evaluate
a3×a3
Use the product rule an×am=an+m to simplify the expression
a3+3
Add the numbers
a6
a3b3−3a4b2+3a5b−a6
a3b3−3a4b2+3a5b−a6−b3
Show Solution

Factor the expression
(a2b2−2a3b+a4+ab2−a2b+b2)(ab−a2−b)
Evaluate
a3(b−a)3−b3
Calculate
a3(b−a)3−a2(b−a)2×b+a2(b−a)2×b−a(b−a)×b2+b2a(b−a)−b3
Rewrite the expression
a2(b−a)2×a(b−a)−a2(b−a)2×b+a(b−a)×ba(b−a)−a(b−a)×b×b+b2a(b−a)−b2×b
Factor out a2(b−a)2 from the expression
a2(b−a)2×(a(b−a)−b)+a(b−a)×ba(b−a)−a(b−a)×b×b+b2a(b−a)−b2×b
Factor out a(b−a)×b from the expression
a2(b−a)2×(a(b−a)−b)+a(b−a)×b(a(b−a)−b)+b2a(b−a)−b2×b
Factor out b2 from the expression
a2(b−a)2×(a(b−a)−b)+a(b−a)×b(a(b−a)−b)+b2(a(b−a)−b)
Factor out a(b−a)−b from the expression
(a2(b−a)2+a(b−a)×b+b2)(a(b−a)−b)
Solution
(a2b2−2a3b+a4+ab2−a2b+b2)(ab−a2−b)
Show Solution
