Question
Solve the equation
Solve for a
Solve for b
a=2−b+−3b2+4a=−2b+−3b2+4a=b
Evaluate
a3−b3=a−b
Move the expression to the left side
a3−b3−(a−b)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a3−b3−a+b=0
Simplify
a3−b3+b−a=0
Factor the expression
(a2+ba+b2−1)(a−b)=0
Separate the equation into 2 possible cases
a2+ba+b2−1=0a−b=0
Solve the equation
More Steps

Evaluate
a2+ba+b2−1=0
Substitute a=1,b=b and c=b2−1 into the quadratic formula a=2a−b±b2−4ac
a=2−b±b2−4(b2−1)
Simplify the expression
More Steps

Evaluate
b2−4(b2−1)
Apply the distributive property
b2−(4b2−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
b2−4b2+4
Subtract the terms
−3b2+4
a=2−b±−3b2+4
Separate the equation into 2 possible cases
a=2−b+−3b2+4a=2−b−−3b2+4
Use b−a=−ba=−ba to rewrite the fraction
a=2−b+−3b2+4a=−2b+−3b2+4
a=2−b+−3b2+4a=−2b+−3b2+4a−b=0
Solution
More Steps

Evaluate
a−b=0
Move the expression to the right-hand side and change its sign
a=0+b
Add the terms
a=b
a=2−b+−3b2+4a=−2b+−3b2+4a=b
Show Solution
