Question
Simplify the expression
36a15−36a
Evaluate
a3×a3×6a2×6a6×a−36a
Solution
More Steps

Evaluate
a3×a3×6a2×6a6×a
Multiply the terms with the same base by adding their exponents
a3+3+2+6+1×6×6
Add the numbers
a15×6×6
Multiply the terms
a15×36
Use the commutative property to reorder the terms
36a15
36a15−36a
Show Solution

Factor the expression
36a(a−1)(a+1)(a6−a5+a4−a3+a2−a+1)(a6+a5+a4+a3+a2+a+1)
Evaluate
a3×a3×6a2×6a6×a−36a
Multiply
More Steps

Evaluate
a3×a3×6a2×6a6×a
Multiply the terms with the same base by adding their exponents
a3+3+2+6+1×6×6
Add the numbers
a15×6×6
Multiply the terms
a15×36
Use the commutative property to reorder the terms
36a15
36a15−36a
Rewrite the expression
36a×a14−36a
Factor out 36a from the expression
36a(a14−1)
Factor the expression
More Steps

Evaluate
a14−1
Calculate
a14+a13−a7−a6−a13−a12+a6+a5+a12+a11−a5−a4−a11−a10+a4+a3+a10+a9−a3−a2−a9−a8+a2+a+a8+a7−a−1
Rewrite the expression
a6×a8+a6×a7−a6×a−a6−a5×a8−a5×a7+a5×a+a5+a4×a8+a4×a7−a4×a−a4−a3×a8−a3×a7+a3×a+a3+a2×a8+a2×a7−a2×a−a2−a×a8−a×a7+a×a+a+a8+a7−a−1
Factor out a6 from the expression
a6(a8+a7−a−1)−a5×a8−a5×a7+a5×a+a5+a4×a8+a4×a7−a4×a−a4−a3×a8−a3×a7+a3×a+a3+a2×a8+a2×a7−a2×a−a2−a×a8−a×a7+a×a+a+a8+a7−a−1
Factor out −a5 from the expression
a6(a8+a7−a−1)−a5(a8+a7−a−1)+a4×a8+a4×a7−a4×a−a4−a3×a8−a3×a7+a3×a+a3+a2×a8+a2×a7−a2×a−a2−a×a8−a×a7+a×a+a+a8+a7−a−1
Factor out a4 from the expression
a6(a8+a7−a−1)−a5(a8+a7−a−1)+a4(a8+a7−a−1)−a3×a8−a3×a7+a3×a+a3+a2×a8+a2×a7−a2×a−a2−a×a8−a×a7+a×a+a+a8+a7−a−1
Factor out −a3 from the expression
a6(a8+a7−a−1)−a5(a8+a7−a−1)+a4(a8+a7−a−1)−a3(a8+a7−a−1)+a2×a8+a2×a7−a2×a−a2−a×a8−a×a7+a×a+a+a8+a7−a−1
Factor out a2 from the expression
a6(a8+a7−a−1)−a5(a8+a7−a−1)+a4(a8+a7−a−1)−a3(a8+a7−a−1)+a2(a8+a7−a−1)−a×a8−a×a7+a×a+a+a8+a7−a−1
Factor out −a from the expression
a6(a8+a7−a−1)−a5(a8+a7−a−1)+a4(a8+a7−a−1)−a3(a8+a7−a−1)+a2(a8+a7−a−1)−a(a8+a7−a−1)+a8+a7−a−1
Factor out a8+a7−a−1 from the expression
(a6−a5+a4−a3+a2−a+1)(a8+a7−a−1)
36a(a6−a5+a4−a3+a2−a+1)(a8+a7−a−1)
Factor the expression
More Steps

Evaluate
a8+a7−a−1
Calculate
a8−a6+a7−a5+a6−a4+a5−a3+a4−a2+a3−a+a2−1
Rewrite the expression
a6×a2−a6+a5×a2−a5+a4×a2−a4+a3×a2−a3+a2×a2−a2+a×a2−a+a2−1
Factor out a6 from the expression
a6(a2−1)+a5×a2−a5+a4×a2−a4+a3×a2−a3+a2×a2−a2+a×a2−a+a2−1
Factor out a5 from the expression
a6(a2−1)+a5(a2−1)+a4×a2−a4+a3×a2−a3+a2×a2−a2+a×a2−a+a2−1
Factor out a4 from the expression
a6(a2−1)+a5(a2−1)+a4(a2−1)+a3×a2−a3+a2×a2−a2+a×a2−a+a2−1
Factor out a3 from the expression
a6(a2−1)+a5(a2−1)+a4(a2−1)+a3(a2−1)+a2×a2−a2+a×a2−a+a2−1
Factor out a2 from the expression
a6(a2−1)+a5(a2−1)+a4(a2−1)+a3(a2−1)+a2(a2−1)+a×a2−a+a2−1
Factor out a from the expression
a6(a2−1)+a5(a2−1)+a4(a2−1)+a3(a2−1)+a2(a2−1)+a(a2−1)+a2−1
Factor out a2−1 from the expression
(a6+a5+a4+a3+a2+a+1)(a2−1)
36a(a6−a5+a4−a3+a2−a+1)(a6+a5+a4+a3+a2+a+1)(a2−1)
Use a2−b2=(a−b)(a+b) to factor the expression
36a(a6−a5+a4−a3+a2−a+1)(a6+a5+a4+a3+a2+a+1)(a−1)(a+1)
Solution
36a(a−1)(a+1)(a6−a5+a4−a3+a2−a+1)(a6+a5+a4+a3+a2+a+1)
Show Solution

Find the roots
a1=−1,a2=0,a3=1
Evaluate
a3×a3×6a2×6a6×a−36a
To find the roots of the expression,set the expression equal to 0
a3×a3×6a2×6a6×a−36a=0
Multiply
More Steps

Multiply the terms
a3×a3×6a2×6a6×a
Multiply the terms with the same base by adding their exponents
a3+3+2+6+1×6×6
Add the numbers
a15×6×6
Multiply the terms
a15×36
Use the commutative property to reorder the terms
36a15
36a15−36a=0
Factor the expression
36a(a14−1)=0
Divide both sides
a(a14−1)=0
Separate the equation into 2 possible cases
a=0a14−1=0
Solve the equation
More Steps

Evaluate
a14−1=0
Move the constant to the right-hand side and change its sign
a14=0+1
Removing 0 doesn't change the value,so remove it from the expression
a14=1
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±141
Simplify the expression
a=±1
Separate the equation into 2 possible cases
a=1a=−1
a=0a=1a=−1
Solution
a1=−1,a2=0,a3=1
Show Solution
