Question
Simplify the expression
8a6−5052068
Evaluate
a6×8−20208272
Cancel out the common factor 4
a6×8−5052068
Solution
8a6−5052068
Show Solution

Factor the expression
5054(1010a6−517)
Evaluate
a6×8−20208272
Cancel out the common factor 4
a6×8−5052068
Use the commutative property to reorder the terms
8a6−5052068
Solution
5054(1010a6−517)
Show Solution

Find the roots
a1=−10106517×10105,a2=10106517×10105
Alternative Form
a1≈−0.894393,a2≈0.894393
Evaluate
a6×8−20208272
To find the roots of the expression,set the expression equal to 0
a6×8−20208272=0
Cancel out the common factor 4
a6×8−5052068=0
Use the commutative property to reorder the terms
8a6−5052068=0
Move the constant to the right-hand side and change its sign
8a6=0+5052068
Add the terms
8a6=5052068
Multiply by the reciprocal
8a6×81=5052068×81
Multiply
a6=5052068×81
Multiply
More Steps

Evaluate
5052068×81
Reduce the numbers
505517×21
To multiply the fractions,multiply the numerators and denominators separately
505×2517
Multiply the numbers
1010517
a6=1010517
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±61010517
Simplify the expression
More Steps

Evaluate
61010517
To take a root of a fraction,take the root of the numerator and denominator separately
610106517
Multiply by the Conjugate
61010×6101056517×610105
The product of roots with the same index is equal to the root of the product
61010×6101056517×10105
Multiply the numbers
More Steps

Evaluate
61010×610105
The product of roots with the same index is equal to the root of the product
61010×10105
Calculate the product
610106
Reduce the index of the radical and exponent with 6
1010
10106517×10105
a=±10106517×10105
Separate the equation into 2 possible cases
a=10106517×10105a=−10106517×10105
Solution
a1=−10106517×10105,a2=10106517×10105
Alternative Form
a1≈−0.894393,a2≈0.894393
Show Solution
