Question
Solve the differential equation
a=eueuu−eu+C,C∈R
Evaluate
a′=u−a
Rewrite the expression
a′+a=u
Rewrite the expression
a′+1×a=u
Since the equation is written in standard form, determine the functions P(u) and Q(u)
P(u)=1Q(u)=u
Insert the function P(u)=1 into the formula for the integrating factor u(u)
u(u)=e∫1duQ(u)=u
Use the property of integral ∫kdx=kx
u(u)=euQ(u)=u
Insert the integrating factor u(u) and the function Q(u) into the general solution formula
a=eu1×∫ueudu
Calculate
More Steps

Evaluate
∫ueudu
Prepare for integration by parts
u=udv=eudu
Calculate the derivative
More Steps

Calculate the derivative
u=u
Evaluate the derivative
du=u′du
Evaluate the derivative
du=1du
Simplify the expression
du=du
du=dudv=eudu
Evaluate the integral
More Steps

Evaluate the integral
dv=eudu
Evaluate the integral
∫1dv=∫eudu
Evaluate the integral
v=eu
du=duv=eu
Substitute u=u、v=eu、du=du、dv=eudu for ∫udv=uv−∫vdu
ueu−∫1×eudu
Calculate
ueu−∫eudu
Use the property of integral ∫exdx=ex
ueu−eu
Add the constant of integral C
ueu−eu+C,C∈R
a=eu1×(ueu−eu+C),C∈R
Calculate
a=euueu−eu+C,C∈R
Solution
a=eueuu−eu+C,C∈R
Show Solution
