Question
Simplify the expression
a2−a−b2+b
Evaluate
a(a−1)−b(b−1)
Expand the expression
More Steps

Calculate
a(a−1)
Apply the distributive property
a×a−a×1
Multiply the terms
a2−a×1
Any expression multiplied by 1 remains the same
a2−a
a2−a−b(b−1)
Solution
More Steps

Calculate
−b(b−1)
Apply the distributive property
−b×b−(−b×1)
Multiply the terms
−b2−(−b×1)
Any expression multiplied by 1 remains the same
−b2−(−b)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−b2+b
a2−a−b2+b
Show Solution

Factor the expression
(a+b−1)(a−b)
Evaluate
a(a−1)−b(b−1)
Simplify
More Steps

Evaluate
a(a−1)
Apply the distributive property
a×a+a(−1)
Multiply the terms
a2+a(−1)
Multiplying or dividing an odd number of negative terms equals a negative
a2−a
a2−a−b(b−1)
Simplify
More Steps

Evaluate
−b(b−1)
Apply the distributive property
−b×b−b(−1)
Multiply the terms
−b2−b(−1)
Multiplying or dividing an even number of negative terms equals a positive
−b2+b
a2−a−b2+b
Calculate
a2−ab+ba−b2−a+b
Rewrite the expression
a×a−ab+ba−b×b−a+b
Factor out a from the expression
a(a−b)+ba−b×b−a+b
Factor out b from the expression
a(a−b)+b(a−b)−a+b
Factor out −1 from the expression
a(a−b)+b(a−b)−(a−b)
Solution
(a+b−1)(a−b)
Show Solution
