Question
Simplify the expression
−27ab3c2−27a3b2c+27a2b3c−27a2bc3+27ab2c3+27a3bc2
Evaluate
a(b−c)×3b(c−a)×3c(a−b)×3
Rewrite the expression in exponential form
a(b−c)×33b(c−a)c(a−b)
Multiply the terms
More Steps

Evaluate
a×33bc
Use the commutative property to reorder the terms
33abc
Evaluate the power
27abc
27abc(b−c)(c−a)(a−b)
Multiply the terms
More Steps

Evaluate
27abc(b−c)
Apply the distributive property
27abcb−27abc×c
Multiply the terms
27ab2c−27abc×c
Multiply the terms
27ab2c−27abc2
(27ab2c−27abc2)(c−a)(a−b)
Multiply the terms
More Steps

Evaluate
(27ab2c−27abc2)(c−a)
Apply the distributive property
27ab2c×c−27ab2ca−27abc2×c−(−27abc2a)
Multiply the terms
27ab2c2−27ab2ca−27abc2×c−(−27abc2a)
Multiply the terms
27ab2c2−27a2b2c−27abc2×c−(−27abc2a)
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
27ab2c2−27a2b2c−27abc3−(−27abc2a)
Multiply the terms
27ab2c2−27a2b2c−27abc3−(−27a2bc2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
27ab2c2−27a2b2c−27abc3+27a2bc2
(27ab2c2−27a2b2c−27abc3+27a2bc2)(a−b)
Apply the distributive property
27ab2c2a−27ab2c2b−27a2b2ca−(−27a2b2cb)−27abc3a−(−27abc3b)+27a2bc2a−27a2bc2b
Multiply the terms
27a2b2c2−27ab2c2b−27a2b2ca−(−27a2b2cb)−27abc3a−(−27abc3b)+27a2bc2a−27a2bc2b
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
27a2b2c2−27ab3c2−27a2b2ca−(−27a2b2cb)−27abc3a−(−27abc3b)+27a2bc2a−27a2bc2b
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
27a2b2c2−27ab3c2−27a3b2c−(−27a2b2cb)−27abc3a−(−27abc3b)+27a2bc2a−27a2bc2b
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
27a2b2c2−27ab3c2−27a3b2c−(−27a2b3c)−27abc3a−(−27abc3b)+27a2bc2a−27a2bc2b
Multiply the terms
27a2b2c2−27ab3c2−27a3b2c−(−27a2b3c)−27a2bc3−(−27abc3b)+27a2bc2a−27a2bc2b
Multiply the terms
27a2b2c2−27ab3c2−27a3b2c−(−27a2b3c)−27a2bc3−(−27ab2c3)+27a2bc2a−27a2bc2b
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
27a2b2c2−27ab3c2−27a3b2c−(−27a2b3c)−27a2bc3−(−27ab2c3)+27a3bc2−27a2bc2b
Multiply the terms
27a2b2c2−27ab3c2−27a3b2c−(−27a2b3c)−27a2bc3−(−27ab2c3)+27a3bc2−27a2b2c2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
27a2b2c2−27ab3c2−27a3b2c+27a2b3c−27a2bc3+27ab2c3+27a3bc2−27a2b2c2
The sum of two opposites equals 0
More Steps

Evaluate
27a2b2c2−27a2b2c2
Collect like terms
(27−27)a2b2c2
Add the coefficients
0×a2b2c2
Calculate
0
0−27ab3c2−27a3b2c+27a2b3c−27a2bc3+27ab2c3+27a3bc2
Solution
−27ab3c2−27a3b2c+27a2b3c−27a2bc3+27ab2c3+27a3bc2
Show Solution
