Question
Function
a′(n)=a
Evaluate
a(n)=a(n−1)
Take the derivative of both sides
a′(n)=dnd(a(n−1))
Calculate
a′(n)=dnd(an−a)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
a′(n)=dnd(an)+dnd(−a)
Calculate
More Steps

Calculate
dnd(an)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
a×dnd(n)
Use dxdxn=nxn−1 to find derivative
a×1
Any expression multiplied by 1 remains the same
a
a′(n)=a+dnd(−a)
Use dxd(c)=0 to find derivative
a′(n)=a+0
Solution
a′(n)=a
Show Solution
