Question
Function
a′(t)=10y
Evaluate
a(t)=1000(1×(t−3)y%)
Simplify
More Steps

Evaluate
1000(1×(t−3)y%)
Remove the parentheses
1000×1×(t−3)y%
Calculate
More Steps

Evaluate
y%
By definition p%=p×0.01
y×0.01
Use the commutative property to reorder the terms
0.01y
1000×1×(t−3)×0.01y
Rewrite the expression
1000(t−3)×0.01y
Multiply the terms
10(t−3)y
Multiply the terms
10y(t−3)
a(t)=10y(t−3)
Take the derivative of both sides
a′(t)=dtd(10y(t−3))
Calculate
a′(t)=dtd(10yt−30y)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
a′(t)=dtd(10yt)+dtd(−30y)
Calculate
More Steps

Calculate
dtd(10yt)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
10y×dtd(t)
Use dxdxn=nxn−1 to find derivative
10y×1
Any expression multiplied by 1 remains the same
10y
a′(t)=10y+dtd(−30y)
Use dxd(c)=0 to find derivative
a′(t)=10y+0
Solution
a′(t)=10y
Show Solution
