Question
Function
a′(x)=−2625d(x−25)
Evaluate
a(x)=−d×41(x−25)2×625
Simplify
More Steps

Evaluate
−d×41(x−25)2×625
Multiply
More Steps

Evaluate
d×41(x−25)2×625
Multiply the numbers
d×4625(x−25)2
Use the commutative property to reorder the terms
4625d(x−25)2
−4625d(x−25)2
a(x)=−4625d(x−25)2
Take the derivative of both sides
a′(x)=dxd(−4625d(x−25)2)
Simplify
a′(x)=−4625d×dxd((x−25)2)
Calculate
More Steps

Evaluate
dxd((x−25)2)
Use the chain rule dxd(f(g))=dgd(f(g))×dxd(g) where the g=x−25, to find the derivative
dgd(g2)×dxd(x−25)
Use dxdxn=nxn−1 to find derivative
2g×dxd(x−25)
Calculate
2g×1
Substitute back
2(x−25)×1
Rewrite the expression
2(x−25)
Apply the distributive property
2x−2×25
Multiply the numbers
2x−50
a′(x)=−4625d(2x−50)
Solution
a′(x)=−2625d(x−25)
Show Solution
